
Even and Odd Functions

Definition. Saying that f is an even function means that f(−x) = f(x) for all x in the
domain of f. Saying that f is an odd function means that f(−x) = −f(x) or f(x) = −f(−x)
for all x in the domain of f .

Note. The graph of an even function is symmetric about the y -axis.
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An Even Function

The graph of an odd function is symmetric about the origin. (x, y) is on the graph if and
only if (−x,−y)is on the graph.
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An Odd Function
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Note. If f(x) = xn then f is an even function when n is an even integer and f is an odd
function when f is an odd integer. The cosine function is even and the sine function is odd.

Theorem. Suppose that each of f and g is an even function and each of u and v is an odd
function all with the same domain D.

1. f + g is an even function.

2. u+ v is an odd function (unlike with integers).

3. f · g is an even function.

4. u · v is an even function (unlike with integers).

5. f · u is an odd function (unlike with integers).

Proof of (5).

(f · u)(−x) = f(−x)u(−x) = f(x) · (−u(x)) = −f(x)u(x) = −(f · u)(x)

for all x in D.

Suggested Problem. Prove Parts (1) - (4).

Note. Most functions are neither even nor odd. For example, if

f(x) = x+ x2

then
f(−1) = 0 while f(1) = 2.

Of course, 0 6= 2 and 0 6= −2. So f is neither even nor odd.

However we do have the following fact.

Theorem. If the domain of f is symmetric about 0 (meaning x is in the domain if and only
if −x is in the domain) then f is the sum of an even function and an odd function.

Proof. Let
fe(x) =

1

2
[f(x) + f(−x)] and fo(x) =

1

2
[f(x)− f(−x)]
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Then
fe(−x) =

1

2
[f(−x) + f(−(−x))] = 1

2
[f(x) + f(−x)] = fe(x)

so fe is even; and

fo(−x) =
1

2
[f(−x)− f(−(−x))] = −1

2
[f(x)− f(−x)] = −fo(x)

so fo is odd. Clearly
f(x) = fe(x) + fo(x)

Definition. fe is called the even part of f and fo is called the odd part of f

Theorem. If f is both even and odd, then f is the zero function on its domain.

Proof. f(−x) = f(x) and f(−x) = −f(x) so f(x) = −f(x) for all x in the domain of f.
Thus 2f(x) = 0 implying f(x) = 0.

There is only one way to express a function as the sum of an even function and an odd
function.

Theorem. Suppose that f is a function whose domain is symmetric about 0. If

f(x) = u1(x) + u2(x) = v1(x) + v2(x)

for all x in the domain of f , each of u1 and v1 is even, and each of u2 and v2 is odd then

u1(x) = v1(x) and u2(x) = v2(x)

for all x in the domain of f .

Proof. If
f(x) = u1(x) + u2(x) = v1(x) + v2(x)

then
u1(x)− v1(x) = v2(x)− u2(x).

The left side of the last equation is even and the right side is odd so each side is both even
and odd. This implies that each side is 0. Thus

u1(x) = v1(x) and v2(x) = u2(x)
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Note. From Calculus, we have ∫ a

b

f(x)dx = −
∫ b

a

f(x)dx

and ∫ h(b)

h(a)

f(x)dx =

∫ b

a

f(h(x))h′(x)dx.

Theorem. If f is an even function, then∫ L

−L
f(x)dx = 2

∫ L

0

f(x)dx.

Proof. Let h(x) = −x.Then∫ L

−L
f(x)dx =

∫ 0

−L
f(x)dx+

∫ L

0

f(x)dx =

∫ h(0)

h(L)

f(x)dx+

∫ L

0

f(x)dx

=

∫ 0

L

f(h(x))h′(x)dx+

∫ L

0

f(x)dx

=

∫ 0

L

f(−x)(−1)dx+
∫ L

0

f(x)dx

= −
∫ 0

L

f(x)dx+

∫ L

0

f(x)dx =

∫ L

0

f(x)dx+

∫ L

0

f(x)dx

= 2

∫ L

0

f(x)dx

Theorem. If f is an odd function, then∫ L

−L
f(x)dx = 0.

Proof. Let h(x) = −x.∫ L

−L
f(x)dx =

∫ 0

−L
f(x)dx+

∫ L

0

f(x)dx =

∫ h(0)

h(L)

f(x)dx+

∫ L

0

f(x)d

=

∫ 0

L

f(h(x))h′(x)dx+

∫ L

0

f(x)dx

=

∫ 0

L

f(−x)(−1)dx+
∫ L

0

f(x)dx

= −
∫ 0

L

(−f(x))dx+
∫ L

0

f(x)dx

=

∫ 0

L

f(x)dx+

∫ L

0

f(x)dx = −
∫ L

0

f(x)dx+

∫ L

0

f(x)dx

= 0
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Theorem. If f is an even function that is integrable over [−L,L], the Fourier Series for f
is {Sn} where

Sn(x) = A0 +
n∑
k=1

Ak cos
kπx

L

in which

A0 =
1

L

∫ L

0

f(x)dx

and

Ak =
2

L

∫ L

0

f(x) cos
kπx

L
dx

for k = 1, 2, . . ..

Proof. According to the definition of a Fourier Series,

Sn(x) = A0 +
n∑
k=1

[
Ak cos

kπx

L
+Bk sin

kπx

L

]
where

A0 =
1

2L

∫ L

−L
f(x)dx,

Ak =
1

L

∫ L

−L
f(x) cos

kπx

L
dx for k = 1, 2, . . . , and

Bk =
1

L

∫ L

−L
f(x) sin

kπx

L
dx for k = 1, 2, . . . .

Since the integrand is even

A0 =
1

2L
· 2
∫ L

0

f(x)dx =
1

L

∫ L

0

f(x)dx

and

Ak =
1

L

∫ L

−L
f(x) cos

kπx

L
dx =

1

L
· 2
∫ L

0

f(x) cos
kπx

L
dx =

2

L

∫ L

0

f(x) cos
kπx

L
dx.

Since the integrand is odd (the product of an even function and an odd function is an odd
function),

Bk =
1

L

∫ L

−L
f(x) sin

kπx

L
dx = 0

Example. If f(x) = |x| for −L ≤ x ≤ L,since f is even, the Fourier Series for f is given by
{Sn} where

Sn(x) = A0 +

n∑
k=1

Ak cos
kπx

L
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in which

A0 =
1

L

∫ L

0

|x|dx = 1

L

∫ L

0

xdx =
L

2

and

Ak =
2

L

∫ L

0

f(x) cos
kπx

L
dx =

2

L

∫ L

0

x cos
kπx

L
dx

=
2

L
[[x · L

kπ
sin

kπx

L
]x=Lx=0 −

∫ L

0

1 · L
kπ
sin

kπx

L
dx]

=
2

L
[0 +

L

kπ
· L
kπ
[cos

kπx

L
]x=Lx=0 ]

=
2L

k2π2
(cos kπ − cos 0)

=
2L

k2π2
((−1)k − 1)

for k = 1, 2, . . .. So the Fourier Series is {Sn} where

Sn(x) =
L

2
+
2L

π2

n∑
k=1

(−1)k − 1
k2

cos
kπx

L
.

Theorem. If f is an odd function that is integrable over [−L,L], the Fourier Series for f
is {Sn} where

Sn(x) =
n∑
k=1

Bk sin
kπx

L

in which

Bk =
2

L

∫ L

0

f(x) sin
kπx

L
dx

for k = 1, 2, . . ..

Proof. According to the definition of a Fourier Series,

Sn(x) = A0 +

n∑
k=1

[
Ak cos

kπx

L
+Bk sin

kπx

L

]
where

A0 =
1

2L

∫ L

−L
f(x)dx,

Ak =
1

L

∫ L

−L
f(x) cos

kπx

L
dx for k = 1, 2, . . . , and

Bk =
1

L

∫ L

−L
f(x) sin

kπx

L
dx for k = 1, 2, . . . .
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Since the integrand is odd,
A0 = 0

and
Ak = 0

for k = 1, 2, . . ..Since the integrand is even,

Bk =
1

L

∫ L

−L
f(x) sin

kπx

L
dx

=
2

L

∫ L

0

f(x) sin
kπx

L
dx =

2

L

∫ L

0

x sin
kπx

L
dx

=
2

L
[[x · (− L

kπ
) cos

kπx

L
]x=Lx=0 +

∫ L

0

1 · L
kπ
cos

kπx

L
dx]

=
2

L
[
−L2
kπ

(−1)k + L2

k2π2
[sin

kπx

L
]x=Lx=0 ]

2L

kπ
(−1)k+1

So the Fourier Series is {Sn} where

Sn(x) =
2L

π

n∑
k=1

(−1)k
k

sin
kπx

L
.
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