Linear Algebra

Philip W. Walker

1 Section 5.6

1.1 The Inverse of a Matrix

Definition 1 Saying that an $n \times n$ matrix A is invertible or has an inverse means that there there is an $n \times n$ matrix B such that

$$AB = I_n$$

where I_n is the $n \times n$ identity matrix.

Remark 2 Not every matrix is invertible.

$$\begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} a+c & b+d \\ 0 & 0 \end{pmatrix} \neq \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

so the matrix

$$\left(\begin{array}{cc} 1 & 1 \\ 0 & 0 \end{array}\right)$$

is not invertible.

Theorem 3 If the $n \times n$ matrix A is invertible, there is only one matrix B such that

$$AB = I_n$$
.

Remark 4 The matrix B must also be $n \times n$.

Definition 5 If the $n \times n$ matrix A is invertible, the matrix B such that $AB = I_n$ is called the matrix inverse to A or the inverse of A or A-inverse and is denoted by A^{-1} .

Theorem 6 If each of A and B is an $n \times n$ matrix and $BA = I_n$ then A is invertible and $B = A^{-1}$.

Theorem 7 If A is a 2×2 matrix with

$$A = \left(\begin{array}{cc} a & b \\ c & d \end{array}\right)$$

then A is invertible if and only if $\det A = ad - bc \neq 0$, in which case,

$$A^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}.$$

You should memorize this formula.

Remark 8 Suppose that A is an $n \times n$ matrix. Here is a procedure to determine whether or not A is invertible and find A^{-1} if it exists. Form the $n \times 2n$ matrix

$$\begin{bmatrix} A & I_n \end{bmatrix}$$

and perform elementary row operations to put it into reduced rowechelon form. If the result is

$$\begin{bmatrix} I_n & B \end{bmatrix}$$

then A is invertible and $B = A^{-1}$. If the result is

$$\left[\begin{array}{cc} C & D \end{array}\right]$$

where each of C and D is an $n \times n$ matrix and $C \neq I_n$ then A is not invertible.

Example 9 Let

$$A = \left(\begin{array}{ccc} 1 & 0 & 2 \\ 2 & -1 & 3 \\ 4 & 1 & 8 \end{array}\right).$$

Then

$$\left[\begin{array}{ccccc} A & I_3 \end{array}\right] = \left(\begin{array}{cccccc} 1 & 0 & 2 & 1 & 0 & 0 \\ 2 & -1 & 3 & 0 & 1 & 0 \\ 4 & 1 & 8 & 0 & 0 & 1 \end{array}\right)$$

$$-2R_1 + R_2 \rightarrow R_2 \ and \ -4R_1 + R_3 \rightarrow R_3$$

$$\left(\begin{array}{ccccccc}
1 & 0 & 2 & 1 & 0 & 0 \\
0 & -1 & -1 & -2 & 1 & 0 \\
0 & 1 & 0 & -4 & 0 & 1
\end{array}\right)$$

$$\overrightarrow{R_2} \leftrightarrow \overrightarrow{R_3}$$

$$\left(\begin{array}{ccccccc}
1 & 0 & 2 & 1 & 0 & 0 \\
0 & 1 & 0 & -4 & 0 & 1 \\
0 & -1 & -1 & -2 & 1 & 0
\end{array}\right)$$

$$\overrightarrow{R_2 + R_3} \rightarrow \overrightarrow{R_3}$$

$$\left(\begin{array}{ccccccc}
1 & 0 & 2 & 1 & 0 & 0 \\
0 & 1 & 0 & -4 & 0 & 1 \\
0 & 0 & -1 & -6 & 1 & 1
\end{array}\right)$$

$$\overrightarrow{-R_3} \rightarrow \overrightarrow{R_3}$$

$$\begin{pmatrix} 1 & 0 & 2 & 1 & 0 & 0 \\ 0 & 1 & 0 & -4 & 0 & 1 \\ 0 & 0 & 1 & 6 & -1 & -1 \end{pmatrix}$$

$$\xrightarrow{-2R_3 + R_1 \to R_1}$$

$$\left(\begin{array}{cccccc}
1 & 0 & 0 & -11 & 2 & 2 \\
0 & 1 & 0 & -4 & 0 & 1 \\
0 & 0 & 1 & 6 & -1 & -1
\end{array}\right).$$

Since the left half of this matrix is I_3 , The matrix A is invertible and A^{-1} is the right half.

$$A^{-1} = \left(\begin{array}{rrr} -11 & 2 & 2 \\ -4 & 0 & 1 \\ 6 & -1 & -1 \end{array} \right).$$

Example 10 Let

$$A = \left(\begin{array}{rrr} 1 & 3 & -4 \\ 1 & 5 & -1 \\ 3 & 13 & -6 \end{array}\right).$$

Then

$$\left[\begin{array}{ccccc} A & I_3 \end{array}\right] = \left(\begin{array}{cccccc} 1 & 3 & -4 & 1 & 0 & 0 \\ 1 & 5 & -1 & 0 & 1 & 0 \\ 3 & 13 & -6 & 0 & 0 & 1 \end{array}\right)$$

$$\overline{-R_1 + R_2 \rightarrow R_2 \ and \ -3R_1 + R_3 \rightarrow R_3}$$

$$\left(\begin{array}{ccccccccc}
1 & 3 & -4 & 1 & 0 & 0 \\
0 & 2 & 3 & -1 & 1 & 0 \\
0 & 4 & 6 & -3 & 0 & 1
\end{array}\right)$$

$$\frac{1}{2}R_2 \to R_2$$

$$\begin{pmatrix}
1 & 3 & -4 & 1 & 0 & 0 \\
0 & 1 & 3/2 & -1/2 & 1/2 & 0 \\
0 & 4 & 6 & -3 & 0 & 1
\end{pmatrix}$$

$$\overline{-4R_2 + R_3 \to R_3}$$

$$\begin{pmatrix}
1 & 3 & -4 & 1 & 0 & 0 \\
0 & 1 & 3/2 & -1/2 & 1/2 & 0 \\
0 & 0 & 0 & -1 & -2 & 1
\end{pmatrix}$$

$$\overline{-R_3 \to R_3}$$

$$\begin{pmatrix}
1 & 3 & -4 & 1 & 0 & 0 \\
0 & 1 & 3/2 & -1/2 & 1/2 & 0 \\
0 & 0 & 0 & 1 & 2 & -1
\end{pmatrix}$$

$$\overline{-3R_2 + R_1 \to R_1}, \overline{\frac{1}{2}}R_3 + R_2 \to R_2 \text{ and } \overline{-R_3 + R_1 \to R_1}$$

$$\begin{pmatrix}
1 & 0 & -17/2 & 0 & -13/2 & 5/2 \\
0 & 1 & 3/2 & 0 & 3/2 & -1/2 \\
0 & 0 & 0 & 1 & 2 & -1
\end{pmatrix}$$
If the left of this matrix is not L, so the matrix A is not invariant.

The left half of this matrix is not I_3 so the matrix A is not invertible

Remark 11 If A is $n \times n$ and invertible the system

$$AX = B$$

which is equivalent to (1) in Section 5.3 in the notes can be solved by multiplying each side of the equation on the left by A^{-1} .

$$A^{-1}AX = A^{-1}B$$

$$I_n X = A^{-1} B$$

$$X = A^{-1}B$$

Example 12 Use this method to solve the system

$$x + 2y - z = 2$$

$$x + y + 2z = 0$$

$$x - y - z = 1$$

Solution. The matrix formulation of this system is

$$AX = B$$

where

$$A = \begin{pmatrix} 1 & 2 & -1 \\ 1 & 1 & 2 \\ 1 & -1 & -1 \end{pmatrix}, \ X = \begin{bmatrix} x \\ y \\ z \end{bmatrix}, \ and \ B = \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix}$$

The reduced row echelon form of

$$\begin{bmatrix} A & I_3 \end{bmatrix} = \begin{pmatrix} 1 & 2 & -1 & 1 & 0 & 0 \\ 1 & 1 & 2 & 0 & 1 & 0 \\ 1 & -1 & -1 & 0 & 0 & 1 \end{pmatrix}$$

is

$$\begin{pmatrix}
1 & 0 & 0 & \frac{1}{9} & \frac{1}{3} & \frac{5}{9} \\
0 & 1 & 0 & \frac{1}{3} & 0 & -\frac{1}{3} \\
0 & 0 & 1 & -\frac{2}{9} & \frac{1}{3} & -\frac{1}{9}
\end{pmatrix}$$

so

$$A^{-1} = \begin{pmatrix} 1/9 & 1/3 & 5/9 \\ 1/3 & 0 & -1/3 \\ -2/9 & 1/3 & -1/9 \end{pmatrix}.$$

Thus

$$X = A^{-1}B = \begin{pmatrix} 1/9 & 1/3 & 5/9 \\ 1/3 & 0 & -1/3 \\ -2/9 & 1/3 & -1/9 \end{pmatrix} \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} \frac{7}{9} \\ \frac{1}{3} \\ -\frac{5}{9} \end{bmatrix}.$$

Thus

$$x = 7/9, y = 1/3, and z = -5/9$$

1.2 Determinants

Definition 13 If A is a 1×1 matrix with A = (a), the determinant of A is a. If A is a 2×2 matrix with

$$A = \left(\begin{array}{cc} a & b \\ c & d \end{array}\right),$$

the determinant of A is ad - bc.

Definition 14 The determinant of a matrix A is denoted det A.

Definition 15 When A is an $n \times n$ matrix with $n \geq 2$, and each of i and j is a positive integer with $i \leq n$ and $j \leq n$, then $A(i \mid j)$ is the $(n-1) \times (n-1)$ matrix obtained by removing the ith row and jth column from A. (You will not find this notation in the test.)

We define the determinant of an $n \times n$ matrix recursively by expansion across the top row.

Definition 16 When A is an $n \times n$ matrix with n > 2

$$\det A = \sum_{j=1}^{n} (-1)^{1+j} A_{1j} \det A(1 \mid j).$$

Example 17

$$\det \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix}$$

$$= a \det \begin{pmatrix} e & f \\ h & i \end{pmatrix} - b \det \begin{pmatrix} d & f \\ g & i \end{pmatrix} + c \det \begin{pmatrix} d & e \\ g & h \end{pmatrix}$$

It is also true that one can expand across any row or down any column.

Theorem 18 When A is an $n \times n$ matrix with n > 2 and i is an integer with $1 \le i \le n$ then

$$\det A = \sum_{j=1}^{n} (-1)^{i+j} A_{ij} \det A(i \mid j). \tag{1}$$

When j is an integer with $1 \le j \le n$ then

$$\det A = \sum_{i=1}^{n} (-1)^{i+j} A_{ij} \det A(i \mid j).$$

Example 19 Expanding across the second row we have

$$\det \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix}$$

$$= -d \det \begin{pmatrix} b & c \\ h & i \end{pmatrix} + e \det \begin{pmatrix} a & c \\ g & i \end{pmatrix} - f \det \begin{pmatrix} a & b \\ g & h \end{pmatrix}$$

Expanding down the third column we have

$$\det \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix}$$

$$= c \det \begin{pmatrix} d & e \\ g & h \end{pmatrix} - f \det \begin{pmatrix} a & b \\ g & h \end{pmatrix} + i \det \begin{pmatrix} a & b \\ d & e \end{pmatrix}$$

Remark 20 When using this procedure, you should pick the row or column with the largest number of zeros.

A more efficient way to find the determinant of a large matrix is to use elementary row operations to transform the matrix into triangular form. First some definitions.

Definition 21 The main diagonal entries of an $n \times n$ matrix A are the entries $A_{11}, A_{22}, \ldots, A_{nn}$.

Definition 22 Saying that a matrix is upper triangular means that all entries below the main diagonal are zero. Saying that a matrix is lower triangular means that all entries above the main diagonal are zero. Saying that a matrix is triangular means that it is upper triangular or that it is lower triangular.

Example 23 Continuing to expand down the first column at each stage, we have

$$\det \begin{pmatrix} a & b & c & d \\ 0 & e & f & g \\ 0 & 0 & h & i \\ 0 & 0 & 0 & j \end{pmatrix} = a \det \begin{pmatrix} e & f & g \\ 0 & h & i \\ 0 & 0 & j \end{pmatrix} = ae \begin{pmatrix} h & i \\ 0 & j \end{pmatrix} = aehj.$$

Example 24 Continuing to expand across the first row at each stage, we have

$$\det \begin{pmatrix} a & 0 & 0 & 0 \\ b & c & 0 & 0 \\ d & e & f & 0 \\ g & h & i & j \end{pmatrix} = a \det \begin{pmatrix} c & 0 & 0 \\ e & f & 0 \\ h & i & j \end{pmatrix} = ac \det \begin{pmatrix} f & 0 \\ i & j \end{pmatrix} = acfj$$

These examples illustrate the following theorem.

Theorem 25 The determinant of a triangular matrix is the product of its diagonal entries.

We need to know how elementary row operations affect the determinant of a matrix.

Theorem 26 Suppose that A is an $n \times n$ matrix and B comes from A by an elementary row operation.

- 1. If $A \to B$ by $R_i \leftrightarrow R_j$ where $i \neq j$ then $\det B = -\det A$.
- 2. If $A \to B$ by $cRi \to Ri$ where $c \neq 0$ then $\det B = c \det A$.
- 3. If $A \to B$ by $cRi + R_j \to R_j$ then $\det B = \det A$.

Example 27 Find det A using elementary row operations when

$$A = \left(\begin{array}{ccc} 6 & 1 & 12 \\ 1 & -4 & 3 \\ 4 & 1 & 8 \end{array}\right)$$

Solution. Let $A_1 = A$

$$\det A_2 = -\det A_1$$

$$\det A_3 = \det A_2 = -\det A_1$$

$$\det A_4 = \det A_3 = -\det A_1$$

$$\det A_4 = (1)(25)(\frac{2}{25}) = 2$$

Thus

$$\det A = \det A_1 = -\det A_4 = -2.$$

Definition 28 Saying that an $n \times n$ matrix is singular means that its determinant is zero. Saying that it is nonsingular means that its determinant is nonzero.

Theorem 29 An $n \times n$ matrix is invertible if and only if it is nonsingular.

1.3 Additional Properties of Determinants

Definition 30 When A is $m \times n$, the transpose of A denoted A^T is the $n \times m$ matrix whose i-j entry is A_{ji} for $i=1,\ldots,n$ and $j=1,\ldots,m$.

Example 31

$$\begin{pmatrix} a & b & c & d \\ e & f & g & h \\ i & j & k & l \end{pmatrix}^{T} = \begin{pmatrix} a & e & i \\ b & f & j \\ c & g & k \\ d & h & l \end{pmatrix}.$$

Example 32

$$\left(\begin{array}{ccc} a & b & c\end{array}\right)^T = \left(\begin{array}{c} a \\ b \\ c\end{array}\right).$$

Theorem 33 When A is $n \times n$,

$$\det A^T = \det A.$$

Theorem 34 If the $n \times n$ matrix A has an all zero row or an all zero column, then $\det A = 0$.

Theorem 35 If the $n \times n$ matrix A has two identical rows or two identical columns, then $\det A = 0$.

Theorem 36 If each of A and B is $n \times n$, then

$$\det(AB) = \det A \det B.$$

1.4 Cramer's Rule

Theorem 37 Suppose that the $n \times n$ matrix A is nonsingular. The system

has a unique solution $(x_1, x_2, ..., x_n)$ where

$$x_j = \frac{\det A_j}{\det A} \text{ for } j = 1, \dots, n$$

where A_j is the $n \times n$ matrix obtained by replacing the jth column of A with

$$\begin{bmatrix} B_1 \\ B_2 \\ \vdots \\ Bn \end{bmatrix}.$$

Example 38 Use Cramer's Rule to solve the system.

$$x + 2y - z = 2$$

$$x + y + 2z = 0$$

$$x - y - z = 1$$

Solution.

$$\det \begin{pmatrix} 1 & 2 & -1 \\ 1 & 1 & 2 \\ 1 & -1 & -1 \end{pmatrix} = 9$$

and

$$\det \begin{pmatrix} 2 & 2 & -1 \\ 0 & 1 & 2 \\ 1 & -1 & -1 \end{pmatrix} = 7$$

so

$$x = 7/9.$$

$$\det \begin{pmatrix} 1 & 2 & -1 \\ 1 & 0 & 2 \\ 1 & 1 & -1 \end{pmatrix} = 3$$

so

$$y = 3/9 = 1/3.$$

$$\det \begin{pmatrix} 1 & 2 & 2 \\ 1 & 1 & 0 \\ 1 & -1 & 1 \end{pmatrix} = -5$$

so

$$z = -5/9$$

1.5 Some Connections

Theorem 39 Suppose that A is an $n \times n$ matrix. Each two of the following statements are equivalent.

- 1. The system AX = B has a unique solution for each n-dimensional column matrix B.
- 2. A is invertible.
- 3. The reduced row-echelon form of A is I_n .
- 4. $\det A \neq 0$
- 5. The rank of A is n.

Theorem 40 If the $n \times n$ matrix A is invertible, then the i-th row and j-th column entry of $A^{-1}is$

$$\frac{1}{\det A}(-1)^{i+j}\det A(j|i)$$

for i = 1, ..., n and j = 1, ..., n.

1.6 Suggested Problems

Do the odd numbered problems for Section 5.6