An Equilibrium Temperature Distrubution Problem

PROBLEM: Find the value of β for which the following problem has an equilibrium temperature distribution.

$$
\begin{gathered}
\frac{\partial w}{\partial t}(x, t)=\frac{\partial^{2} w}{\partial x^{2}}(x, t)+x \text { for } t \geq 0 \text { and } 0 \leq x \leq L \\
w(x, 0)=f(x) \text { for } 0 \leq x \leq L \\
\frac{\partial w}{\partial x}(0, t)=1, \text { and } \frac{\partial w}{\partial x}(L, t)=\beta \text { for } t \geq 0
\end{gathered}
$$

Let u be the equilibrium solution so that

$$
u(x)=\lim _{t \rightarrow \infty} w(x, t) \text { for } 0 \leq x \leq L
$$

Find a formula for $u(x)$ that does not contain any undetermined constants.
SOLUTION: The problem for the equilibrium distribution u is obtained by setting the time derivative equal to zero in the PDE for w and replacing $w(x, t)$ with $u(x)$. Thus

$$
\begin{gathered}
0=u^{\prime \prime}(x)+x \text { or } u^{\prime \prime}(x)=-x \text { for } 0 \leq x \leq L, \\
u^{\prime}(0)=1, \text { and } u^{\prime}(L)=\beta .
\end{gathered}
$$

Integrating once, we have from the ODE for u that

$$
u^{\prime}(x)=-\frac{1}{2} x^{2}+c_{1} .
$$

Applying $u^{\prime}(0)=1$ we have

$$
1=-\frac{1}{2} 0^{2}+c_{1} .
$$

So $c_{1}=1$ and

$$
u^{\prime}(x)=-\frac{1}{2} x^{2}+1 .
$$

Applying $u^{\prime}(L)=\beta$ we have

$$
\beta=-\frac{1}{2} L^{2}+1 .
$$

Integrating each side of the last DE for $u^{\prime}(x)$ we have

$$
u(x)=-\frac{1}{6} x^{3}+x+c_{2}
$$

To complete the solution, we need to find c_{2}.
Returning to the PDE for w we have

$$
\frac{d}{d t} \int_{0}^{L} w(x, t) d x=\int_{0}^{L} \frac{\partial w(x, t)}{\partial t} d x=\int_{0}^{L}\left(\frac{\partial^{2} w}{\partial x^{2}}(x, t)+x\right) d x
$$

Using the Fundamental Theorem fo Calculus, we get

$$
\frac{d}{d t} \int_{0}^{L} w(x, t) d x=\frac{\partial w(L, t)}{\partial x}-\frac{\partial w(0, t)}{\partial x}+\frac{1}{2} L^{2} .
$$

So

$$
\frac{d}{d t} \int_{0}^{L} w(x, t) d x=\beta-1+\frac{1}{2} L^{2} .
$$

Since $\beta=-\frac{1}{2} L^{2}+1$,

$$
\frac{d}{d t} \int_{0}^{L} w(x, t) d x=0
$$

Thus

$$
\int_{0}^{L} w(x, t) d x
$$

is constant in time, and we get

$$
\int_{0}^{L} w(x, 0) d x=\lim _{t \rightarrow \infty} \int_{0}^{L} w(x, t) d x=\int_{0}^{L} \lim _{t \rightarrow \infty} w(x, t) d x
$$

From this we may conclude that

$$
\int_{0}^{L} f(x) d x=\int_{0}^{L} u(x) d x
$$

so

$$
\int_{0}^{L} f(x) d x=\int_{0}^{L}\left(-\frac{1}{6} x^{3}+x+c_{2}\right) d x .
$$

Evaluating the integral on the right we have

$$
\int_{0}^{L} f(x) d x=-\frac{1}{24} L^{4}+\frac{1}{2} L^{2}+c_{2} L .
$$

Thus

$$
c_{2}=\frac{1}{24} L^{3}-\frac{1}{2} L+\frac{1}{L} \int_{0}^{L} f(x) d x .
$$

Finally

$$
u(x)=-\frac{1}{6} x^{3}+x+\frac{1}{24} L^{3}-\frac{1}{2} L+\frac{1}{L} \int_{0}^{L} f(x) d x .
$$

