
Laplace Equation Problem I

PROBLEM: Derive the solution to

∂2u

∂x2
(x, y) +

∂2u

∂y2
(x.y) = 0 for 0 ≤ x ≤ L and 0 ≤ y ≤ H, (1)

u(0, y) = 0 for 0 ≤ y ≤ H, (2)

u(L, y) = 0 for 0 ≤ y ≤ H, (3)

u(x,H) = 0 for 0 ≤ x ≤ L, and (4)

u(x, 0) = f(x) for 0 ≤ x ≤ L. (5)

Where each of H and L is a positive number. Then find the solution when

f(x) = x(L− x) for 0 ≤ x ≤ L. (6)

SOLUTION: Suppose that u is an elementary separated solution to (1). This means

u(x, y) = ϕ(x)h(y)

for some pair of one-place functions ϕ and h. Inserting this into (1), we have

ϕ′′(x)h(y) + ϕ(x)h′′(y) = 0. (7)

Assuming for now that
u(x.y) �= 0,

and dividing each side of (7) by ϕ(x)h(y), we have

ϕ′′(x)h(y)

ϕ(x)h(y)
+
ϕ(x)h′′(y)

ϕ(x)h(y)
= 0,

so
h′′(y)

h(y)
= −ϕ

′′(x)

ϕ(x)
.

This holds for all y with 0 ≤ y ≤ H and x with 0 ≤ x ≤ L, so there is a constant λ such
that

h′′(y)

h(y)
= λ = −ϕ

′′(x)

ϕ(x)
(8)

for all y with 0 ≤ y ≤ H and x with 0 ≤ x ≤ L. From (8) we then have

−ϕ′′(x) = λϕ(x) for all x in [0, L] (9)

and
h′′(y) = λh(y) for all y in [0,H]. (10)

It is worth noting that if
u(x, y) = ϕ(x)h(y)

and (9) and (10) hold, then

∂2u

∂x2
(x, y) = ϕ′′(x)h(y) = −λϕ(x)h(y)

= −ϕ(x)h′′(y) = −∂
2u

∂y2
(x, y)
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so the PDE (1)
∂2u

∂x2
(x, y) +

∂2u

∂y2
(x.y) = 0

will be satisfied, and we no longer need to assume that u(x, y) �= 0. Continuing with our
assumption that

u(x, y) = ϕ(x)h(y)

we have from conditions (2) and (3) (which stated that u(0, y) = 0 = u(L, y)) that either
h(y) = 0 for all y in [0, H] which we reject because of (5) (which stated that u(x, 0) = f(x))
or

ϕ(0) = 0 (11)

and
ϕ(L) = 0 (12)

which we must accept. In a similar way we have from (4) (which stated that u(x,H) = 0)
that

h(H) = 0 (13)

The Sturm-Louville problem consisting of (9), (11), and (12) (which we repeat here)

−ϕ′′ = λϕ on [0, L]

ϕ(0) = 0, and

ϕ(L) = 0

is one which we have studied. A proper listing of eigenvalues and eigenfunctions for this
problem is

{λk}∞k=1 and {ϕk}∞k=1
where

λk = (
kπ

L
)2 for k = 1, 2, . . .

and

ϕk(x) = sin
kπ

L
x for all x in [0, L] and k = 1, 2, . . . .

The equation (10)
h′′(y) = λh(y)

is equivalent to
h′′(y)− λh(y) = 0. (14)

When λ > 0 as it must be because all eigenvalues for the problem (9), (11), and (12) are
positive, a familiar linearly independent pair of solutions to (14) is the pair whose values at
y are

e
√
λy and e−

√
λy.

Another linearly independent pair of solutions is the pair whose values at y are

cosh
√
λy and sinh

√
λy.
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A third linearly independent pair of solutions is the pair whose values at y are

sinh
√
λy and sinh

√
λ(H − y).

This can be verified by direct substitution into the differential equation (14) and use of the
Wronskian. We could use any of these three pairs, but the last one makes our solution
process easier. Since h is a solution to (14), we have

h(y) = c1 sinh
√
λy + c2 sinh

√
λ(H − y).

We have from (13) that h(H) = 0, so

c1 sinhλH + c2 sinh
√
λ(H −H) = 0,

Using the fact that sinh 0 = 0 and sinh z �= 0 when z �= 0, we have that c1 = 0 and see that
when λ = λk then the solutions to (13) and (14) are constant multiples of hk where

hk(y) = sinh
√
λk(H − y).

Let us recall the original problem.

∂2u

∂x2
(x, y) +

∂2u

∂y2
(x.y) = 0 for 0 ≤ x ≤ L and 0 ≤ y ≤ H, (1)

u(0, y) = 0 for 0 ≤ y ≤ H, (2)

u(L, y) = 0 for 0 ≤ y ≤ H, (3)

u(x,H) = 0 for 0 ≤ x ≤ L, and (4)

u(x, 0) = f(x) for 0 ≤ x ≤ L. (5)

The problem consisting of (1), (2), (3), and (4) is linear and homogeneous, so if {Ek}nk=1is a
finite sequence of numbers and

u(x, y) =
n∑

k=1

Ekϕk(x)hk(y),

then u will be a solution to (1), (2), (3), and (4). Thus we hope that the solution to the
problem consisting of (1) through (5) will be of the form

u(x, y) =
∞∑

k=1

Ekϕk(x)hk(y)

for some perhaps infinite sequence of constants {Ek}∞k=1.
Condition (5)

u(x, 0) = f(x) for x in [0, L],

implies

f =
∞∑

k=1

Ekϕkhk(0) =
∞∑

k=1

(Ek sinh
√
λkH)ϕk.
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Since {ϕk}∞k=1 is an orthogonal sequence of non zero function this implies

(Ek sinh
√
λkH) =

< f,ϕk >

< ϕk, ϕk >

so

Ek =
< f,ϕk >

sinh
√
λkH < ϕk, ϕk >

for k = 1, 2, . . .where the inner product is defined by

< α, β >=
∫ L

0

α(x)β(x)dx.

For this sequence {ϕk},

< ϕk, ϕk >=
∫ L

0

(sin
kπx

L
)2dx =

L

2
for k = 1, 2, . . . .

In summary, the solution to the original problem (1) through (5) is u where

u(x, y) =
∞∑

k=1

Ek sin
kπx

L
sinh

kπ

L
(H − y)

in which

Ek =
2

L sinh kπH
L

∫ L

0

f(x) sin
kπx

L
dx for k = 1, 2, . . .

If f is given by
f(x) = x(L− x) for 0 ≤ x ≤ L

then

Ek =
2

L sinh kπH
L

∫ L

0

x(L− x) sin kπx
L
dx

Remembering that
sin kπ = 0 and cos kπ = (−1)k

and integrating by parts twice, we find that

Ek =
4L2

π3k3 sinh kπH
L

(1− (−1)k)

so

u(x, y) =
4L2

π3

∞∑

k=1

1

k3 sinh kπH
L

(1− (−1)k) sin kπx
L
sinh

kπ

L
(H − y).
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