
Wave Equation Problem I

PROBLEM: Suppose that each of c and L is a positive number. Derive the solution to

∂2u

∂t2
(x, t) = c2

∂2u

∂x2
(x, t) for 0 ≤ x ≤ L amd all t in R, (1)

u(0, t) = 0 for all t in R, (2)

u(L, t) = 0 for all t in R, (3)

u(x, 0) = f(x) for 0 ≤ x ≤ L, and (4)

∂u

∂t
(x, 0) = g(x) for 0 ≤ x ≤ L. (5)

Then find the solution when

f(x) = x(L− x) for 0 ≤ x ≤ L

and

g(x) =

∣∣∣∣x−
L

2

∣∣∣∣−
L

2
for 0 ≤ x ≤ L.

SOLUTION: Suppose that u is an elementary separated solution to (1). This means

u(x, t) = ϕ(x)h(t)

for some pair of one-place functions ϕ and h. Inserting this into (1), we have

ϕ(x)h′′(t) = c2ϕ′′(x)h(t). (6)

Assuming for now that
u(x.t) �= 0,

and dividing each side of (6) by ϕ(x)h(t), we have

ϕ(x)h′′(t)

ϕ(x)h(t)
= c2

ϕ′′(x)h(t)

ϕ(x)h(t)
,

so
h′′(t)

h(t)
= c2

ϕ′′(x)

ϕ(x)
.

This holds for all t and all x with 0 ≤ x ≤ L, so there is a constant K such that

h′′(t)

h(t)
= K = c2

ϕ′′(x)

ϕ(x)
(7)

for all t and all x with 0 ≤ x ≤ L. As a matter of notational convenience and so that we can
more easily make use of our earlier work on two-point boundary value problems, we let

λ = −K
c2
so K = −c2λ.

From (7) we then have
−ϕ′′(x) = λϕ(x) for all x in [0, L] (8)
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and
h′′(t) = −λc2h(t) for all t. (9)

It is worth noting that if
u(x, t) = ϕ(x)h(t)

and (8) and (9) hold, then

∂2u

∂t2
(x, t) = ϕ(x)h′′(t) = −λc2ϕ(x)h(t)

= c2ϕ′′(x)h(t) = c2
∂2u

∂x2
(x, t)

so the PDE (1)
∂2u

∂t2
(x, t) = c2

∂2u

∂x2
(x, t)

will be satisfied, and we no longer need to assume that u(x, t) �= 0. Continuing with our
assumption that

u(x, t) = ϕ(x)h(t)

We have from conditions (2) and (3) (which stated that u(0, t) = 0 = u(L, t)) that either
h(t) = 0 for all t which we reject because of (4) and (5) (which stated that u(x, 0) = f(x)

and
∂u

∂t
(x, 0) = g(x)) or

ϕ(0) = 0 (10)

and
ϕ(L) = 0 (11)

which we must accept.
The Sturm-Louville problem consisting of (8), (10), and (11) (which we repeat here)

−ϕ′′ = λϕ on [0, L]

ϕ(0) = 0, and

ϕ(L) = 0

is one which we have studied. A proper listing of eigenvalues and eigenfunctions for this
problem is

{λk}∞k=1 and {ϕk}∞k=1
where

λk = (
kπ

L
)2 for k = 1, 2, . . .

and

ϕk(x) = sin
kπ

L
x for all x in [0, L] and k = 1, 2, . . . .

The equation (9)
h′′(t) = −c2λh(t)
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is equivalent to
h′′(t) + c2λh(t) = 0. (12)

When λ > 0 as it must be because all eigenvalues for the problem (8), (10), and (11) are
positive, a linearly independent pair of solutions to (12) is the pair whose values at t are

cos
√
λct and sin

√
λct.

Thus when λ = λk the solutions to (9) are linear combinations of the functions h1k and h2k
where

h1k(t) = cos
√
λkct and h2k(t) = sin

√
λkct.

Let us recall the original problem.

∂2u

∂t2
(x, t) = c2

∂2u

∂x2
(x, t) for 0 ≤ x ≤ L amd all t in R, (1)

u(0, t) = 0 for all t in R, (2)

u(L, t) = 0 for all t in R, (3)

u(x, 0) = f(x) for 0 ≤ x ≤ L, and (4)

∂u

∂t
(x, 0) = g(x) for 0 ≤ x ≤ L. (5)

The problem consisting of (1), (2), and (3) is linear and homogeneous, so if {Ak}nk=1 and
{Bk}nk=1 are finite sequences of numbers and

u(x, t) =

n∑

k=1

ϕk(x)[Akh1k(t) +Bkh2k(t)],

then u will be a solution to (1), (2), and (3). Thus we hope that the solution to the problem
consisting of (1) through (5) will be of the form

u(x, t) =
∞∑

k=1

ϕk(x)[Akh1k(t) +Bkh2k(t)] (13)

for some perhaps infinite sequences of constants {Ak}∞k=1 and {Bk}∞k=1.
Condition (4)

u(x, 0) = f(x) for x in [0, L],

implies

f =
∞∑

k=1

ϕk[Akh1k(0) +Bkh2k(0)] =
∞∑

k=1

[Ak cos 0 +Bk sin 0]ϕk =
∞∑

k=1

Akϕk.

Since {ϕk}∞k=1 is an orthogonal sequence of non zero functions this implies

Ak =
< f, ϕk >

< ϕk, ϕk >

3
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so for k = 1, 2, . . .where the inner product is defined by

< α, β >=

∫ L

0

α(x)β(x)dx.

For this sequence {ϕk},

< ϕk, ϕk >=

∫ L

0

(sin
kπx

L
)2dx =

L

2
for k = 1, 2, . . . .

Returning to (13) we expect

∂u

∂t
(x, t) =

∞∑

k=1

ϕk(x)[Akh
′

1k(t) +Bkh
′

2k(t)].

Condition (5)
∂u

∂t
(x, 0) = g(x) for all x in [0, L]

implies

g =
∞∑

k=1

ϕk[Akh
′

1k(0) +Bkh
′

2k(0)] =
∞∑

k=1

(
kπc

L
)[−Ak sin 0 +Bk cos 0]ϕk =

∞∑

k=1

(
kπc

L
)Bkϕk

so

(
kπc

L
)Bk =

< g, ϕk >

< ϕk, ϕk >
or Bk = (

2

L
)(
L

kπc
) < g, ϕk >

for k = 1, 2, 3, . . ..In summary, the solution to the original problem (1) through (5) is u where

u(x, t) =
∞∑

k=1

[Ak cos
kπct

L
+Bk cos

kπct

L
] sin

kπx

L

in which

Ak =
2

L

∫ L

0

f(x) sin
kπx

L
dx for k = 1, 2, . . .

and

Bk =
2

kπc

∫ L

0

g(x) sin
kπx

L
dx for k = 1, 2, . . .

If f is given by
f(x) = x(L− x) for 0 ≤ x ≤ L

then

Ak =
2

L

∫ L

0

x(L− x) sin kπx
L
dx

Remembering that
sin kπ = 0 and cos kπ = (−1)k
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and integrating by parts twice, we find that

Ak =
4L2

π3k3
(1− (−1)k).

If g is given by

g(x) =

∣∣∣∣x−
L

2

∣∣∣∣−
L

2
for 0 ≤ x ≤ L

then

Bk =
2

kπc

∫ L

0

[∣∣∣∣x−
L

2

∣∣∣∣−
L

2

]
sin
kπx

L
dx.

So

Bk =
−2
kπc

∫ L/2

0

x sin
kπx

L
dx+

2

kπc

∫ L

L/2

(x− L) sin kπx
L
dx.

Using integration by parts, we find that

Bk =
−4L2 sin 1

2
kπ

k3π3c

so

u(x, t) =
4L2

π3

∞∑

k=1

1

k3

[
(1− (−1)k) cos kπct

L
− sin

1

2
kπ

c
sin
kπct

L

]
sin
kπx

L
.
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