
Introduction to Vector Spaces: Independence, Span and Basis

A vector space, or sometimes called a linear space, is an abstract system composed of a

set of objects called vectors, an associated field of scalars, see e.g. [†], together with the

operations of vector addition and scalar multiplication. Let V denote the set of vectors

and F denote the field of scalars. Here I’ll use bold lowercase Roman letters to signify

vectors, e.g. x ∈ V , and lowercase Greek letters to signify scalars, e.g. α ∈ F .

I’m going to list out now what properties vector addition and scalar multiplication are

required to satisfy on a given vector space.

(a–0) For every x and y ∈ V we have x+ y ∈ V .

(a–1) For every x , y and z ∈ V we have (x+ y) + z = x+ (y + z) .

(a–2) For every x and y ∈ V we have x+ y = y + x .

(a–3) There is a vector 0 ∈ V such that x+ 0 = x for every x ∈ V .

(a–4) For every x ∈ V there is a vector x̃ ∈ V such that x+ x̃ = 0 .

(m–0) For every α ∈ F and x ∈ V we have αx ∈ V .

(m–1) For every α and β ∈ F we have α(βx) = (αβ)x for every x ∈ V .

(m–2) If 1 ∈ F is the scalar field’s multiplicative identity then 1x = x for any x ∈ V .

(d–1) For every α ∈ F and x and y ∈ V we have α(x+ y) = αx+ αy .

(d–2) (α+ β)x = αx+ βx

Let me say a few words about these items. (a–0) says the set V is closed under vector

addition. (m–0) says V is also closed under scalar multiplication. (a–1) and (a–2) say

vector addition must be associative and commutative. (a–3) says V must contain an

additive identity. Property (a–4) says every vector in V has an additive inverse in V .

(d–1) and (d–2) are required scalar–vector distributive properties.

When the scalar field F = R (the field of real numbers) one calls the vector space a real

vector space. When F = C (the field of complex numbers) the vector space is called a

complex vector space.

On this homework, and for much of the semester, we will focus on a particular vector space

whose set of vectors V are comprised of column matrices with real entries

V ≡



x =




x1

...
xm


 : x1 ∈ R, . . . , xm ∈ R



 ,

[†] https://en.wikipedia.org/wiki/Field (mathematics)
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and scalars given by the field of real numbers R . Vector addition and scalar multiplication

is defined exactly as done for matrices on your previous homework,

x =




x1

...
xm


 , y =




y1
...
ym


 , α ∈ R ⇒ x+ y ≡




x1 + y1
...

xm + ym


 and αx ≡




αx1

...
αxm


 .

We call this system R
m . Clearly on R

m

0 =




0
...
0


 and for x ∈ R

m its additive inverse is x̃ =




−x1

...
−xm


 .

Check on your own that all properties (a–0) thru (d–2) listed above are satisfied by this

system, and so R
m defines a vector space.

A vector space has several useful properties (beyond the ones listed above) which can be

derived entirely from (a–*), (m–*) and (d–*). Next, I’ll state and prove some of these.

(p–1) The additive identity on a vector space is unique. To see this is true, suppose 0 and

0′ are both additive identities from V . From (a–3) this says in particular 0′ + 0 = 0′ as

well as 0 + 0′ = 0 . These together with (a–2) gives 0′ = 0′ + 0 = 0 + 0′ = 0 and so

0′ = 0 . Therefore, the additive identity is unique.

(p–2) The additive inverse of a vector from a vector space is unique. To see this is true,

let x ∈ V be arbitrary and suppose x̃ and x̃′ are both additive inverses for x . That is,

property (a–4) says x + x̃ = 0 as well as x + x̃′ = 0 . These, together with (a–3), (a–2)

and (a–1) yield

x̃′ = x̃′ + 0 = x̃′ + (x+ x̃) = x̃+ (x+ x̃′) = x̃+ 0 = x̃,

and so x̃′ = x̃ . Therefore, x ’s additive inverse is unique.

(p–3) If for a given x ∈ V there is a z ∈ V satisfying x+z = x then we must have z = 0 .

To see this is true, (a–4) tells us there is a vector x̃ ∈ V such that x + x̃ = 0 . Use this

together with what’s given, i.e. x = x+ z , as well as (a–1), (a–2) and (a–3), to find

0 = x+ x̃ = (x+ z) + x̃ = z+ (x+ x̃) = z+ 0 = z.

Therefore, z must be the vector space’s (unique) additive identity.

Three additional useful facts are given in the following.

(p–4) For a given vector space, let 0 denote its scalar field’s additive identity, let 1 denote

its multiplicative identity, and let −1 denote the additive inverse of the scalar 1. For any

vector x ∈ V and any scalar α ∈ F we have

(i) 0x = 0, (ii) α0 = 0, (iii) −1x = x̃,
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where x̃ as usual denotes x ’s additive inverse. To see that (i) is true, properties (m–2)

and (d–1) combine to say

x+ 0x = 1x+ 0x = (1 + 0)x = 1x = x.

But (p–3) above tells us this implies 0x (= z) = 0 . (ii) follows from (i) and (m–1) as

follows. α0 = α (00) = (α 0)0 = 00 = 0 . Finally, (iii) follows from (a–1), (a–2), (a–3),

(a–4), (d–1) and (i) above by writing

x̃ = x̃+ 0 = x̃+ (1− 1)x = x̃+ x+ (−1)x = 0+ (−1)x = −1x.

These additional properties can be very useful when doing vector algebra. For example:

Given that α1 x1 + α2 x2 + α3 x3 = 0, where α1 6= 0

⇒ x1 = β2 x2 + β3 x3, where β2 = −α2/α1, β3 = −α3/α1.

This calculation is obviously valid on a simple vector space such as R
m . While always

true, it may not be so obvious in more abstract situations.

A subspace S of a parent vector space V is composed of a nonempty subset of the parent’s

vectors, say S ⊆ V . It also shares the same scalar field and notion of vector addition and

scalar multiplication with its parent. But this is not enough to call S a subspace of V . A

subspace must also be a vector space on its own. However, it isn’t necessary to check that

all conditions (a–0) thru (d–2) are satisfied in order to accomplish this goal. One needs

only to check that the subset S is closed under the inherited notion of vector addition and

scalar multiplication. We’ll package this well known fact into the following statement.

(ssp) Let V be a vector space where V denotes its set of vectors. Consider a nonempty

subset S ⊆ V and the system S defined by this subset of vectors together with V ’s

scalars and its notion of vector addition and scalar multiplication. Then, S is a vector

space provided the subset S is closed under both vector addition and scalar multiplication.

The notation S ⊆ V is often used to signify that S is a subspace of V . You are asked to

prove statement (ssp) in an exercise below.

Here are three examples to help clarify what a subspace is. Consider a subset of vectors

from the vector space R
2

S = {x ∈ R
2 : x1 = 1}.

Does this set define a subspace of R2 ? The answer is no. S is neither closed under vector

addition nor scalar multiplication. For example

x =

(
1
0

)
∈ S, y =

(
1
1

)
∈ S, but x+ y =

(
2
1

)
6∈ S,
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and also

x =

(
1
0

)
∈ S, α = 0 ∈ R but αx =

(
0
0

)
6∈ S.

Here’s a second example. Consider

S = {x ∈ R
2 : x1 > 0}.

This set is closed under vector addition since for arbitrary x ∈ S and y ∈ S

x =

(
x1

x2

)
∈ S, y =

(
y1
y2

)
∈ S ⇒ x1 > 0, y1 > 0 ⇒ x+ y =

(
x1 + y1
x2 + y2

)
∈ S,

since x1 + y1 > 0. But it’s not closed under scalar multiplication since for example

x =

(
1
0

)
∈ S, α = 0 ∈ R but αx =

(
0
0

)
6∈ S.

Therefore, S = {x ∈ R
2 : x1 > 0} does not define a subspace of R2 .

Here’s a third example. Consider

S = {x ∈ R
2 : x1 + x2 = 0}.

This set is closed under vector addition since

x =

(
x1

x2

)
∈ S, y =

(
y1
y2

)
∈ S ⇒ x1 + x2 = 0, y1 + y2 = 0

⇒ x+ y =

(
x1 + y1
x2 + y2

)
∈ S.

But x+ y ∈ S because (x1 + y1) + (x2 + y2) = x1 + x2 + y1 + y2 = 0 + 0 = 0. Moreover

x =

(
x1

x2

)
∈ S ⇒ x1 + x2 = 0 ⇒ α ∈ R, αx =

(
αx1

αx2

)
∈ S,

because (αx1) + (αx2) = α(x1 + x2) = α 0 = 0. So, S is also closed under scalar

multiplication. Therefore, this third example does in fact define a subspace of R2 .

1. Prove the statement given in (ssp) is true. Do not assume the parent space V is R
m but

is a general vector space. Hint: Properties (a–1), (a–2), (m–1), (m–2), (d–1) and (d–2) are

obviously true because the vectors in S are a subset of the vectors in V . Properties (a–0)

and (m–0) are assumed in the statement itself. You need to verify properties (a–3) and

(a–4) are true. That is, show that 0 ∈ S and for any x ∈ S its additive inverse x̃ ∈ S .

2. Determine whether or not the following sets define a subspace of R2 .

(a) {x ∈ R
2 : x1 = 0} (c) {x ∈ R

2 : x1 + x2 ≥ 0}

(b) {x ∈ R
2 : x1 − x2 = 0} (d) {x ∈ R

2 : x1 + 2x2 = 0}

Either prove the set is closed under both vector addition and scalar multiplication or give

an example to show it is not.
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Consider a set of n vectors {x1, . . . ,xn} . This set is called a dependent set if there are n

scalars, α1, . . . , αn , which are not all zero such that

α1x1 + · · ·+ αnxn = 0.

A set of vectors that is not dependent is called an independent set.

Given that the vectors in the set above come from the vector space R
m , we can use matrix

elimination to determine whether the set is independent or not. The problem can be recast

as follows.

α1x1 + · · ·+ αnxn = 0 ⇐⇒




x1,1 · · · x1,n

...
...

xm,1 · · · xm,n







α1

...
αn


 =




0
...
0


 .

Make sure to understand why the matrix multiplication formulation on the right is the

same as what’s written on the left. Check that the j th column of the m × n matrix on

the right is the column vector xj ∈ R
m . The zero matrix on the right has size m × 1.

Now see that if the only solution to this linear system is α1 = · · · = αn = 0, then the set

is independent. If the system has a nontrivial solution, however, the set is dependent.

Consider the following four vectors from R
3 .

x1 ≡




1
2
3


 , x2 ≡




4
5
6


 , x3 ≡




7
8
9


 , x4 ≡




7
8
3


 .

I’m going to use these in the next two examples.

Is the set {x1,x2,x3} an independent set? The augmented matrix to consider is
[
1 4 7
2 5 8
3 6 9

0
0
0

]
∼

[
1 4 7
0 −3 −6
0 −6 −12

0
0
0

]
∼

[
1 4 7
0 1 2
0 0 0

0
0
0

]
.

Back substitution tells us α3 = α , α2 = −2α and α1 = −4(−2α)− 7(α) = α for any real

number α . WLOG take α = 1 to see 1x1 − 2x2 + 1x3 = 0 , and conclude {x1,x2,x3} is

not an independent set of vectors.

Is the set {x1,x2,x4} an independent set? The augmented matrix to consider here is
[
1 4 7
2 5 8
3 6 3

0
0
0

]
∼

[
1 4 7
0 −3 −6
0 −6 −18

0
0
0

]
∼

[
1 4 7
0 1 2
0 1 3

0
0
0

]
∼

[
1 4 7
0 1 2
0 0 1

0
0
0

]
.

This time back substitution tells us α3 = 0, α2 = 0 and α1 = 0. Therefore

α1x1 + α2x2 + α3x4 = 0 ⇒ α1 = α2 = α3 = 0,

and we conclude {x1,x2,x4} is an independent set of vectors.
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3. Prove the following. A set of vectors {x1, . . . ,xn} (assume n ≥ 2) is dependent if and

only if at least one its vectors can be written as a linear combination of the others.

You need not assume these vectors come from R
m . Hint: Show xi∗ =

∑
k 6=i∗

αkxk for

some index 1 ≤ i∗ ≤ n .

Consider the following vectors from R
4 .

x1 =




1
4
2

−3


 , x2 =




7
10
−4
−1


 , x3 =




−2
1
5

−14


 , x4 =




−2
1
5

−4


 .

4. Is {x1,x2,x3} an independent set of vectors?

5. Is {x1,x2,x4} an independent set of vectors?

6. Is {x1,x3,x4} an independent set of vectors?

Consider a finite set of vectors, {x1, . . . ,xn} , from a vector space V . The span of this set

is the subspace of V defined by

span{x1, . . . ,xn} ≡ {
∑n

k=1
αkxk : each αk ∈ F }

where F is V ’s scalar field. That is,

y ∈ span{x1, . . . ,xn} ⇐⇒ y = α1x1 + · · ·+ αnxn

for some collection of scalars α1, . . . , αn . In other words, a vector is in span{x1, . . . ,xn}

when it can be written as a linear combination of the specified vectors x1, . . . ,xn . Make

sure to convince yourself that span{x1, . . . ,xn} really is closed under both vector addition

and scalar multiplication, and therefore conclude the span is a subspace of V regardless of

the particulars of the set of vectors which defines it.

If {x1, . . . ,xn} is an independent set of vectors and y ∈ span{x1, . . . ,xn} then the de-

composition y = α1x1 + · · ·+ αnxn is unique. Let me show you why. Suppose there are

two ways to decompose y , say

y = α1x1 + · · ·+ αnxn and y = β1x1 + · · ·+ βnxn

⇒ 0 = (α1 − β1)x1 + · · ·+ (αn − βn)xn

⇒ (α1 − β1) = · · · = (αn − βn) = 0.

This last step follows from the fact that {x1, . . . ,xn} is an independent set. So, since we

have αk = βk for each k = 1, . . . , n , the two decompositions above are in fact identical.
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It’s not hard to show the following. If {x1, . . . ,xn} is a dependent set of vectors and

y ∈ span{x1, . . . ,xn} then the decomposition y = α1x1 + · · ·+ αnxn is not unique. You

are asked to show this in exercise 7 below.

Now lets again restrict our attention to the special vector space V = R
m . How do we

compute whether or not a given vector is in a span? We’ll use elimination of course.

Consider the subspace S ≡ span{x1,x2,x3} ⊆ R
4 where

x1 =




1
4
2

−3


 , x2 =




7
10
−4
−1


 , x3 =




−2
1
5

−4


 .

Is y ≡




9
27
9

−17


 ∈ span{x1,x2,x3}? The linear system we have to solve is




1 7 −2
4 10 1
2 −4 5

−3 −1 −4







α1

α2

α3


 =




9
27
9

−17


 ⇒




1 7 −2
4 10 1
2 −4 5

−3 −1 −4

9
27
9

−17


 ,

and we eliminate the augmented matrix to obtain

∼




1 7 −2
0 2 −1
0 2 −1
0 2 −1

9
1
1
1


 ∼




1 7 −2
0 2 −1
0 0 0
0 0 0

9
1
0
0


 .

Now, use back substitution. See that α3 is a free variable, so let α3 = α where α is any

real number. Then, α2 = 1

2
(1 + α) and α1 = 1

2
(11− 3α) . So we get

y =




9
27
9

−17


 = 1

2
(11− 3α)x1 +

1

2
(1 + α)x2 + αx3 ∈ S.

Therefore we see y ∈ S . Moreover, since the decomposition is not unique, i.e. α here can

be any real number, we also conclude the set of vectors {x1,x2,x3} is not independent.

(Look back at exercise 5 above.)

Let me change y by a little bit and ask the same question.
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Is y ≡




9
27
9

−16


 ∈ span{x1,x2,x3}? The augmented matrix to consider here is




1 7 −2
4 10 1
2 −4 5

−3 −1 −4

9
27
9

−16


 ∼




1 7 −2
0 2 −1
0 2 −1
0 2 −1

9
1
1

11/10


 ∼




1 7 −2
0 2 −1
0 0 0
0 0 0

9
1

1/10
0


 .

However, the third row in the right above says 0α1 + 0α2 + 0α3 = 1/10, and this is

impossible. Therefore, this time y 6∈ span{x1,x2,x3} .

7. Suppose {x1, . . . ,xn} is a dependent set of vectors from a general vector space V , and

suppose y ∈ span{x1, . . . ,xn} . Prove there are an infinite number decompositions such

that y = α1x1 + · · ·+ αnxn .

Hint. Since {x1, . . . ,xn} is a dependent set, there are scalars β1, . . . , βn which are not all

zero such that β1x1 + · · ·+ βnxn = 0 .

8. Let {x1,x2,x3} come from exercise 4 above. Determine if the given vector y is in

span{x1,x2,x3} . If it is, write down and check the decomposition y = α1x1+α2x2+α3x3 .

(a) y =




1
2
3
4


 (b) y =




6
15
3

−18




A basis for a vector space is a linearly independent spanning set.

That is, {b1, . . . ,bn} is a basis for a vector space V if:

(1) V = span{b1, . . . ,bn} .

(2) {b1, . . . ,bn} is an independent set.

The dimension of a vector space is the number of basis vectors needed to span it. It’s not

obvious, but this number is independent of any particular spanning basis.

Clearly,

R
2 = span{e1, e2}, where e1 =

(
1
0

)
, e2 =

(
0
1

)
,

and so R
2 is two dimensional (duh). Not as obvious, but you can check that this is another

basis for R
2

R
2 = span{b1,b2}, where b1 =

(
1
1

)
, b2 =

(
2
3

)
.
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The basis {e1, e2} is called the standard basis for R
2 . The standard basis for R

m is

e1 =




1
0
0
...
0




, e2 =




0
1
0
...
0




, · · · , em−1 =




0
...
0
1
0




, em =




0
...
0
0
1




.

One might think that the standard basis for R
m is the most useful of all of its bases. But

it really depends on the application. Later in this course we will consider others.

Let me close out this assignment by showing you, by example, how to convert a given basis

for a subspace of Rm to its standard basis.

Recall from exercise 4 you showed

x1 =




1
4
2

−3


 , x2 =




7
10
−4
−1


 , x3 =




−2
1
5

−14


 ,

is an independent set. Therefore {x1,x2,x3} is a basis for S ≡ span{x1,x2,x3} . To

determine S ’s standard basis, write out an augmented matrix using these three column

vectors as rows 


1 4 2 −3
7 10 −4 −1

−2 1 5 −14


 .

Notice there’s no vertical bar (
∣∣) here. Now, row reduce to row echelon form

∼



1 4 2 −3
0 18 18 −20
0 9 9 −20


 ∼



1 4 2 −3
0 18 18 −20
0 0 0 20


 ∼



1 4 2 −3
0 1 1 −20/18
0 0 0 1




Notice on the right I’ve scaled all pivots to one. Finally, starting from the right most pivot,

use backward elimination to get

∼



1 4 2 0
0 1 1 0
0 0 0 1


 ∼



1 0 −2 0
0 1 1 0
0 0 0 1


 .

This is called the row canonical form or alternatively the reduced row echelon form for the

augmented matrix; see [‡] where the reduced row echelon form is discussed. The standard

basis for the subspace S ≡ span{x1,x2,x3} can now be read off as follows

S = span{e1, e2, e3}, where e1 =




1
0

−2
0


 , e2 =




0
1
1
0


 , e3 =




0
0
0
1


 .

[‡] https://wikipedia.org/wiki/Row echelon form
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BTW. I checked my calculation by observing

x1 = e1 + 4 e2 − 3 e3

x2 = 7 e1 + 10 e2 − e3

x3 = −2 e1 + e2 − 14 e3.

9. Find the standard basis for span{x1,x3,x4} from exercise 6.

10. The set {x1,x2,x4} from exercise 5 is not independent. However, it’s still possible to

determine the standard basis for span{x1,x2,x4} as just done. You’ll get a zero row when

eliminating to row canonical form. Disregard the zero row when you read off your basis.

What is the dimension of span{x1,x2,x4}? Answer: two.
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