
Gram-Schmidt, Orthogonal Matrices and Schur’s Lemma

Recall the vector space R
n . The scalars are real numbers, where here they’ll typically

be denoted by lowercase Greek letters such as α or β , and the vectors are real column

matrices, typically denoted here by boldface lowercase Roman letters such as x or y . The

dot product is defined by

x =




x1

...
xn


 , y =




y1
...
yn


 ⇒ x · y ≡ x1y1 + · · ·+ xnyn.

Note that using matrix multiplication we have x ·y = xTy . The dot product is symmetric

and bilinear. That is

symmetric ⇒ x · y = y · x
bilinear ⇒ z · (αx+ βy) = α(z · x) + β(z · y),

(αx+ βy) · z = α(x · z) + β(y · z).

The euclidean length of a vector x is denoted by ||x|| and is a nonnegative real number

given by

||x|| ≡
√
x · x =

√
x2
1 + · · ·+ x2

n.

The euclidean length is homogeneous with respect to scalar multiplication. That is

||αx|| = |α| ||x||,

where |α| denotes the absolute value of the real scalar α . It’s also important to observe

that ||x|| = 0 ⇐⇒ x = 0 . The dot product and euclidean length can be exemplified in

e.g. R3 as follows. Let

x =




1
2
3


 , y =




4
5
6




⇒ x · y = 1 · 4 + 2 · 5 + 3 · 6 = 32

and ||x|| =
√

12 + 22 + 32 =
√
14, ||y|| =

√
42 + 52 + 62 =

√
77.

Both the euclidean length and the dot product are geometrically significant. For example,

if x′ denotes a solid body rotation of x then ||x′|| = ||x|| . Moreover, if x and y are

simultaneously rotated to x′ and y′ then x′ · y′ = x · y . That is, both the euclidean

length and the dot product are invariant with respect to solid body rotation. From this

the following important fact easily follows. For any two nonzero vectors x and y

x · y
||x|| ||y|| = cos(θx,y),
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where θx,y is the planar angle between vectors x and y . I’ll be glad to derive this fact in

class if you ask.

Two nonzero vectors, say e1 and e2 , are orthogonal (or perpendicular) to eachother when

the angle between them is θe1,e2
= 90◦ ⇐⇒ e1 · e2 = 0. For example, in R

4

e1 =




1
2
1
1


 is orthogonal to e2 =




2
−2
3

−1


 because e1 · e2 = 0.

Suppose I have a set containing m nonzero and mutually orthogonal vectors from R
n .

That is, a set

Om = {e1, e2, . . . , em}

whose vectors satisfy ei 6= 0 for each i (nonzero) and ei · ej = 0 for each i 6= j (mutually

orthogonal). I will call such a set an orthogonal set. An orthogonal set is always linearly

independent. To see this is true, suppose

α1e1 + α2e2 + · · ·+ αmem = 0,

and dot both sides above with the vector e1 to find

α1(e1 · e1) = (α1e1 + α2e2 + · · ·+ αmem) · e1 = 0 · e1 = 0 ⇒ α1 = 0.

Next dot both sides with the vector e2 to find

α2(e2 · e2) = (α1e1 + α2e2 + · · ·+ αmem) · e2 = 0 · e2 = 0 ⇒ α2 = 0.

Continue this process to conclude we must have α1 = α2 = · · · = αm = 0 which proves

the set is indeed independent.

The dot product can also be used to build a larger orthogonal set from a smaller one. As

an example, consider the two orthogonal vectors from R
4 we considered earlier

e1 =




1
2
1
1


 and e2 =




2
−2
3

−1


 , and check that x =




0
0
1
0


 6∈ span{e1, e2}.

Now, take e3 of the form

e3 = x− (α1e1 + α2e2) ,

and determine scalars α1 and α2 to make e3 orthogonal to both e1 and e2 . To this end,

dot both sides with e1 and then with e2 to find

0 = e3 · e1 = (x− (α1e1 + α2e2)) · e1 = (x · e1)− α1(e1 · e1)
⇒ α1 = (x · e1)/(e1 · e1),

0 = e3 · e2 = (x− (α1e1 + α2e2)) · e2 = (x · e2)− α2(e2 · e2)
⇒ α2 = (x · e2)/(e2 · e2).
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Plug in values and compute that α1 = 1/7 and α2 = 3/18. Therefore

e3 =




0
0
1
0


− 1

7




1
2
1
1


− 3

18




2
−2
3

−1


 =

1

42




−20
2
15
1


 .

Rescaling the length of e3 above, we now have three orthogonal vectors

e1 =




1
2
1
1


 , e2 =




2
−2
3

−1


 , e3 =




−20
2
15
1


 .

Make sure you understand why in the construction done above I took x 6∈ span{e1, e2} .
This will guarantee that e3 6= 0 . The process just done can be continued to determine a

fourth orthogonal vector, e4 , as follows. Check that this time

x =




0
0
0
1


 6∈ span{e1, e2, e3},

and take e4 of the form

e4 = x− (α1e1 + α2e2 + α3e3) .

Since now we want e4 to be orthogonal to e1 , e2 and e3 , again use the dot product to

determine

α1 = (x · e1)/(e1 · e1), α2 = (x · e2)/(e2 · e2), α3 = (x · e3)/(e3 · e3).
I’ll leave it as an exercise for you to explicitly calculate values for the scalars α1 , α2 and

α3 and finally to evaluate e4 . It looks like it might get pretty messy though.

Gram-Schmidt is an algorithm for building an orthogonal basis. I’ve shown you how it

works by example in the previous paragraph. For completeness sake, let me write it here

as an inductive process. Suppose R
n is our underlying vector space.

Let e1 be a nonzero vector in R
n.Step 1:

Now inductively for k = 2, . . . , n do the following.

Find xk 6∈ span{e1, . . . , ek−1}.Step k:

Set ek = xk − (α1e1 + · · ·+ αk−1ek−1),

where α1 = (xk · e1)/(e1 · e1), . . . , αk−1 = (xk · ek−1)/(ek−1 · ek−1).

When done, Gram-Schmidt yields an orthogonal basis for R
n .

Here’s one last Gram-Schmidt example, this time on R
3 . Take

e1 =




0
1
1


 , x2 =




1
0
0


 , x3 =




0
0
1


 .
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I picked x2 and x3 above so that {e1,x2,x3} obviously forms a basis for R
3 . Compute

e2 = x2 − (α1e1) ⇒ α1 = 0/2 = 0 ⇒ e2 = ( 1 0 0 )
T
.

Next, compute

e3 = x3 − (α1e1 + α2e2) ⇒ α1 = 1/2, α2 = 0/1 ⇒ e3 = ( 0 −1/2 1/2 )
T
.

This gives us an orthogonal basis for R
3

{ ( 0 1 1 )
T
, ( 1 0 0 )

T
, ( 0 −1/2 1/2 )

T }

1. Use Gram-Schmidt to find an orthogonal basis for R
3 taking

e1 = ( 1 1 1 )
T
.

as your first vector. Also, please use

x2 = ( 0 1 0 )
T

and x3 = ( 0 0 1 )
T

in your G-S process. My answer: After rescaling lengths I got

e1 = ( 1 1 1 )
T
, e2 = (−1 2 −1 )

T
, e3 = (−1 0 1 )

T
.

2. Use Gram-Schmidt to find an orthogonal basis for R
4 taking

e1 = ( 1 0 1 0 )
T
.

as your first vector. Also, please use

x2 = ( 0 1 0 0 )
T
, x3 = ( 0 0 1 0 )

T
and x4 = ( 0 0 0 1 )

T

in your G-S process. My answer: After rescaling lengths I got

e1 =




1
0
1
0


 , e2 =




0
1
0
0


 , e3 =




−1
0
1
0


 , e4 =




0
0
0
1


 .

A nonzero vector in R
n can be normalized to have unit length by scalar multiplying by

the reciprocal of its length. That is, when x 6= 0 , the vector

x̂ ≡ 1

||x|| x ⇒ ||x̂|| = || 1

||x|| x|| =
1

||x|| ||x|| = 1.

Such vectors are called unit vectors and are often indicated by placing the chapeau symbol

(̂) on top of the vector name as done above. When each vector in an orthogonal basis is

normalized to have unit length we call the scaled basis an orthonormal basis. I may also

apply the chapeau symbol

{ê1, ê2, . . . , ên}
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to help clarify this fact.

Consider an n× n matrix O whose columns are vectors from an orthonormal basis

O =

(
ê1 ê2 · · · ên
| | |

)

and its transpose

OT =




êT1 ——

êT2 ——
...
êTn ——


 .

Matrix multiplication (i.e. dotting rows with columns) clearly shows

(OTO)i,j = êi · êj =
{
1 if i = j
0 if i 6= j

⇒ OTO = I ⇒ OT = O−1,

and in this case we’ll call O an orthogonal matrix or more properly an orthonormal matrix.

To help you see what an orthonormal matrix is, consider the orthogonal basis you derived

in exercise 1. Normalize each orthogonal basis vector to get

ê1 =
1√
3




1
1
1


 , ê2 =

1√
6




−1
2
−1


 , ê3 =

1√
2




−1
0
1


 .

Therefore,

O =




1√
3

−1√
6

−1√
2

1√
3

2√
6

0
1√
3

−1√
6

1√
2




is an orthonormal matrix, and you should check that OTO = I .

Here’s an important fact that everybody should know. The product of two orthonormal

matrices is an orthonormal matrix. This is easily seen as follows. Suppose OT
1 = O−1

1 and

OT
2 = O−1

2 and let O3 = O1O2 denote the matrix product. Calculate

OT
3 = (O1O2)

T = OT
2 O

T
1 = O−1

2 O−1

1 = (O1O2)
−1 = O−1

3 .

Therefore, O3 is an orthonormal matrix. We’ll use this fact later.

3. Consider an orthogonal basis for R
2 given by

e1 =

(
1
3

)
, e2 =

(
3

−1

)
.

Use these to build an orthonormal matrix O3 .

4. Consider an orthogonal basis for R
2 given by

e1 =

(
2
3

)
, e2 =

(
3

−2

)
.

Use these to build an orthonormal matrix O4 .
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5. Compute the product O = O3O4 where O3 is from exercises 3 and O4 is from exercise 4

and confirm O is an orthonormal matrix.

6. Compute MTM with M given by

M =




1 0 −1 0
0 1 0 0
1 0 1 0
0 0 0 1


 .

See exercise 2. Explain why the diagonal matrix you got is not the identity.

The result of Schur’s lemma has important theoretical consequences as opposed to being

a powerful computational tool. Its general statement reads as follows. Every square

matrix is unitarily similar to an upper triangular matrix. A unitary matrix is the complex

generalization of the orthonormal matrix we saw above. Specifically, U ∈ C
n×n is unitary if

U∗U = I where the notation U∗ (read U -star) stands for the complex conjugate transpose

of U . To say a matrix A is unitarily similar to an upper triangular matrix means there is

a unitary matrix U such that

U∗AU = T

where T is upper triangular. What I’ll prove here is given that A ∈ R
n×n has only real

eigenvalues, there is an orthonormal matrix O such that

OTAO = T.

Interestingly, the eigenvalues of A , counting multiplicity, are the diagonal entries of T .

Here’s a 2× 2 example to start things off. Consider

A =

(
−1 6
−1 4

)
, which has λ = 1, r =

(
3
1

)
.

(Check that its other eigenvalue is λ = 2.) Construct an orthogonal basis {e1, e2} by tak-

ing e1 = r and Gram-Schmidt to get e2 = 3

10
(−1 3 )

T
. From this build the orthonormal

matrix

O =
1√
10

(
3 −1
1 3

)
,

and compute

OTAO =
1√
10

(
3 1

−1 3

)(
−1 6
−1 4

)
1√
10

(
3 −1
1 3

)

=
1

10

(
3 1

−1 3

)(
3 19
1 13

)
=

(
1 7
0 2

)
.
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Why did this similarity transformation triangularize A? Well, notice

OTAO =

(
êT1 ——

êT2 ——

)
A

(
ê1 ê2
| |

)
=

(
êT1 Aê1 êT1 Aê2
êT2 Aê1 êT2 Aê2

)
,

and since ê1 is an eigenvector with eigenvalue 1 and {ê1, ê2} is an orthonormal basis

êT1 Aê1 = êT1 1ê1 = 1 and êT2 Aê1 = êT2 1ê1 = 0.

Therefore

OTAO =

(
1 êT1 Aê2
0 êT2 Aê2

)
= T.

Also notice that T1,1 is equal to the eigenvalue λ = 1. But why is T2,2 = êT2 Aê2 equal to

the other eigenvalue λ = 2? Well, recall similar matrices always have the same character-

istic polynomial

B = S−1AS ⇒ det(B − λI) = det(S−1AS − λI) = det(S−1(A− λI)S)

= det(S−1) det(A− λI) det(S) = det(A− λI),

and T and A are similar. Since T is triangular det(T −λI) = (T1,1 −λ)(T2,2 −λ) ⇒ the

diagonal entries T1,1 and T2,2 must be eigenvalues of A .

Here’s a 3× 3 example. Consider

A =




3 −1 1
−2 4 2
−1 1 5


 , which has λ = 2, r =




1
1
0


 .

(Check that its other eigenvalues are λ = 4 and λ = 6.) Gram-Schmidt taking e1 = r to

obtain an orthogonal basis with vectors

e1 =




1
1
0


 , e2 =

1

2




−1
1
0


 , e3 =




0
0
1


 ⇒ O1 =

1√
2




1 −1 0
1 1 0
0 0

√
2


 ,

and now compute

OT
1 AO1 =




2 1 3
√
2/2

0 5
√
2/2

0
√
2 5


 =

(
2 1 3

√
2/2

0
0

Ã2

)
where Ã2 =

(
5

√
2/2√

2 5

)
.

Clearly the 2 × 2 submatrix Ã2 is not upper triangular. However, we can easily find

another orthonormal transformation to make it so. It’s also easy to see that Ã2 must have

eigenvalues λ = 4 and λ = 6 – i.e. the other two eigenvalues of the 3× 3 matrix A . For

eigenvalue λ = 4, I calculated that Ã2 has eigenvector r = (−
√
2/2 1 )

T
. Take e1 = r

and Gram-Schmidt to find e2 = ( 1
√
2/2 )

T
, and normalize to get

ê1 =
2√
6

(
−
√
2/2
1

)
, ê2 =

2√
6

(
1√
2/2

)
⇒ Õ2 =

2√
6

(
−
√
2/2 1
1

√
2/2

)
,
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where Õ2 is a 2× 2 orthonormal matrix. Again, multiply out to find

ÕT
2 Ã2Õ2 =

(
4

√
2/2

0 6

)
.

We’re essentially done now. The only problem is Õ2 is a 2×2 matrix – not 3×3. However,

we can embed it in a 3× 3 matrix as follows.

O2 ≡
(

1 0 0
0
0

Õ2

)
⇒ OT

2 O2 =

(
1 0 0
0
0

ÕT
2

)(
1 0 0
0
0

Õ2

)
=




1 0 0
0 1 0
0 0 1




which says O2 is a 3×3 orthonormal matrix. Therefore, since as shown earlier the product

of orthonormal matrices is orthonormal, define O = O1O2 and find

OTAO = OT
2

(
OT

1 AO1

)
O2 =

(
1 0 0
0
0

ÕT
2

)(
2 1 3

√
2/2

0
0

Ã2

)(
1 0 0
0
0

Õ2

)

=

(
2 ∗ ∗
0
0

ÕT
2 Ã2Õ2

)
=




2 ∗ ∗
0 4

√
2/2

0 0 6


 .

The stars (∗) above indicate possibly nonzero numbers above the main diagonal. Their

particular values are not significant to the current discussion. Note A ’s eigenvalues on the

main diagonal of OTAO .

Our work above and induction on dimension will verify the result of Schur’s lemma in our

restricted case when A ∈ R
n×n and has only real eigenvalues. Suppose 1 ≤ k < n and

suppose there is an orthonormal matrix Ok which reduces A as follows.

OT
k AOk =

(
Tk ∗
0 Ãk+1

)
,

where Tk ∈ R
k×k is upper triangular with eigenvalues λ1, . . . , λk along its diagonal,

Ãk+1 ∈ R
n−k×n−k , the ∗ represents an k × n− k block of possibly nonzero real numbers

and 0 represents a n−k×k block of zeros. Because A is similar to OT
k AOk , they have the

same characteristic polynomial. The fundamental theorem of algebra allows us to factor

A ’s characteristic polynomial

det(A− λI) = (λ1 − λ) · · · (λk − λ)
[
(λk+1 − λ) · · · (λn − λ)

]
,

and cofactors allows us to write

det(OT
k AOk − λI) = (λ1 − λ) · · · (λk − λ)

[
det(Ãk+1 − λI)

]
.

Equating the square bracketed terms in each, i.e.
[
· · ·
]
, find that

det(Ãk+1 − λI) = (λk+1 − λ) · · · (λn − λ).
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Therefore, Ãk+1 has eigenvalue λ = λk+1 and an associated eigenvector r ∈ R
n−k×n−k .

Take e1 = r and use Gram-Schmidt to build an orthogonal basis

R
n−k = span{e1, . . . , en−k} giving Õk+1 =

(
ê1 ê2 · · · ên−k

| | |

)
,

where the columns of Õk+1 are the normalized orthogonal basis vectors ê1, . . . , ên−k .

Clearly, Õk+1 is an orthonormal matrix. Moreover

ÕT
k+1Ãk+1Õk+1 =




êT1 ——

êT2 ——
...
êTn−k——




(
Ãk+1ê1 Ãk+1ê2 · · · Ãk+1ên−k

| | |

)

=

(
λk+1 ∗
0 Ãk+2

)
,

where ∗ is a possibly nonzero n − k − 1 row vector and 0 is a n − k − 1 column vector

containing only zeros. This last identity follows from the fact that ê1 is a normalized

eigenvector of Ãk+1 and the normalized basis vectors are orthogonal, that is

êT1 Ãk+1ê1 = êT1 λk+1ê1 = λk+1

êTi Ãk+1ê1 = êTi λk+1ê1 = 0 for i = 2, . . . , n− k.

Finally, compute the product

Ok+1 = Ok

(
I 0T

0 Õk+1

)
,

where I is the k×k identity, 0 is a n−k×k block of zeros and Õk+1 is the n−k×n−k

orthonormal matrix constructed above. Clearly, Ok+1 is an orthonormal matrix and it

brings us to the next induction step

OT
k+1AOk+1 =

(
Tk+1 ∗
0 Ãk+2

)
.

This completes the general n× n induction argument.

I know the induction argument given above might be somewhat confusing to many of you.

That’s why I gave the 2× 2 and 3× 3 examples first. Pay more attention to the examples

and don’t get mired in the mud of uninteresting details in the general case. Schur’s idea

is really quite simple though. Just knock off one column at a time.

7. Find an orthonormal matrix O so that OTAO is upper triangular when A =

(
−1 2
−3 4

)
.

My upper triangular: OTAO =

(
1 −5
0 2

)
.
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8. Find an orthonormal matrix O so that OTAO is upper triangular when A =

(
2 1
1 2

)
.

My upper triangular: OTAO =

(
1 0
0 3

)
.

9. Let A =




−1 6 0
−1 4 0
0 0 1


 . Find orthonormal O so the OTAO is upper triangular.

My upper triangular: OTAO =




1 0 0
0 1 7
0 0 2


 .

I want to make a couple of simple but important closing comments. Notice the Schur

triangular matrix found in exercise 8 was better than just upper triangular, in fact it was

diagonal, OTAO = Λ where Λ = diag(1, 3). In this case, Schur’s lemma gives us both

A ’s eigenvalues as well as its eigenvectors. Is there something special here about A? The

answer is yes. In exercise 8 the matrix A is symmetric. Let me show you this wasn’t just

a lucky problem.

First, when A is real and symmetric, that is when A ∈ R
n×n and AT = A , its eigenvalues

must be real. To see this, suppose it has a complex eigenvalue λ with associated complex

eigenvector r . Notice

Ar = λr ⇒ (Ar)∗ = (λr)∗ ⇒ r∗A∗ = λ̄r∗,

where the star superscript (∗) denotes the complex conjugate transpose of a complex

matrix and the overbar ( ¯ ) denotes the complex conjugate of a complex scalar. Multiply

the left most expression above on the left by r∗ , resp. multiply the right most expression

on the right by r to get

r∗Ar = λ r∗r, resp. r∗A∗r = λ̄ r∗r.

Subtract the first from the second and use the fact that A∗ = A

0 = r∗A∗r− r∗Ar = (λ̄− λ) r∗r.

An eigenvector r is never 0 , and this tells us r∗r is a positive real number. Therefore

λ̄− λ = 0 ⇒ λ̄ = λ ⇒ λ ∈ R.

Finally, because A and λ are real, we can assume without loss of generality that the

associate eigenvector r is real.

Our version of Schur’s lemma (we assumed real eigenvalues) applies to a real symmetric

matrix A , and so there is an orthonormal matrix O and an upper triangular matrix T
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such that

OTAO = T ⇒ (OTAO)T = TT ⇒ OTATO = TT ⇒ OTAO = TT .

However, T = TT implies the upper triangular matrix T is in fact diagonal. Therefore,

a symmetric matrix is always diagonalizable. Moreover, it can be assumed that each

eigenvector of A is orthogonal to every other of its eigenvectors, i.e. its eigenvectors can

be assumed to form an orthogonal basis.
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