Consider the linear and homogeneous first order system of ODEs

$$
\frac{d \mathbf{u}}{d t}=A(t) \mathbf{u}, \quad \text { where } \mathbf{u} \in \mathbb{R}^{n}, A(t) \in \mathbb{R}^{n \times n}
$$

and throughout assume the entries of $A(t)$, i.e. $a_{i, j}(t)$, are everywhere continuous real valued functions of the independent variable t. Suppose somehow we are able to determine a set containing n solution vectors,

$$
S \equiv\left\{\mathbf{u}_{1}(t), \mathbf{u}_{2}(t), \ldots, \mathbf{u}_{n}(t)\right\}, \quad \text { where for each } j=1,2, \ldots, n \text { we have } \frac{d \mathbf{u}_{j}}{d t}=A(t) \mathbf{u}_{j}
$$

Here's what will be shown below. If S is a linearly independent set of vectors at a single $t=t_{*}$, it is in fact linearly independent at every $t \in \mathbb{R}$. When so, S is called a fundamental set of solutions. On the other hand, if S is linearly dependent at a single t, it is in fact linearly dependent at all t.

To see this is true, consider an $n \times n$ matrix $W(t)$ constructed so its j th column is $\mathbf{u}_{j}(t)$,

$$
W(t)=\left(\begin{array}{llll}
\mathbf{u}_{1}(t) & \mathbf{u}_{2}(t) & \cdots & \mathbf{u}_{n}(t)
\end{array}\right), \quad \text { and let } w(t)=\operatorname{det} W(t)
$$

Often, $W(t)$ is called the Wronskian matrix, and $w(t)$ is called the Wronskian determinant. Later I'll show $w(t)$ solves the scalar ODE

$$
\frac{d w}{d t}=\operatorname{Tr}(A(t)) w
$$

where $\operatorname{Tr}(A)$ denotes the trace of the matrix $A ; \operatorname{Tr}(A) \equiv a_{1,1}+a_{2,2}+\cdots+a_{n, n}$. You know from week two of our class how to explicitly solve this scalar ODE

$$
w(t)=\exp \left(h(t)-h\left(t_{*}\right)\right) w\left(t_{*}\right), \quad \text { where } h(t) \text { is the antiderivative of } \operatorname{Tr}(A(t))
$$

We've assumed all entries of $A(t)$ are everywhere continuous, which implies $h(t)$ is a continuously differentiable function at every t, which implies $\exp \left(h(t)-h\left(t_{*}\right)\right)>0$ for every t. Therefore

$$
w(t)=0 \quad \Longleftrightarrow \quad w\left(t_{*}\right)=0
$$

But this is exactly what we need in order to conclude the set $\left\{\mathbf{u}_{1}(t), \mathbf{u}_{2}(t), \ldots, \mathbf{u}_{n}(t)\right\}$ is linearly independent/dependent at time t if and only if it is so at some other $t=t_{*}$.

Now, to show w solves the scalar $\mathrm{ODE} d w / d t=\operatorname{Tr}(A) w$, I'll write the Wronskian matrix in terms of row vectors $\mathbf{r}_{1}(t), \ldots, \mathbf{r}_{n}(t)$,

$$
W(t)=\left(\begin{array}{c}
\mathbf{r}_{1}(t) \\
\vdots \\
\mathbf{r}_{n}(t)
\end{array}\right), \text { where }\left(\mathbf{r}_{i}\right)_{j}=\left(\mathbf{u}_{j}\right)_{i}
$$

There's a pretty formula for the derivative of the determinant which was probably discovered by Leibniz. It says

$$
\frac{d w}{d t}=\operatorname{det}\left(\begin{array}{c}
(d / d t) \mathbf{r}_{1} \\
\mathbf{r}_{2} \\
\vdots \\
\mathbf{r}_{n}
\end{array}\right)+\operatorname{det}\left(\begin{array}{c}
\mathbf{r}_{1} \\
(d / d t) \mathbf{r}_{2} \\
\vdots \\
\mathbf{r}_{n}
\end{array}\right)+\cdots+\operatorname{det}\left(\begin{array}{c}
\mathbf{r}_{1} \\
\mathbf{r}_{2} \\
\vdots \\
(d / d t) \mathbf{r}_{n}
\end{array}\right)
$$

This formula is sometimes called the determinant product rule and is derived by forming the difference quotient $\frac{1}{\Delta t}(w(t+\Delta t)-w(t))$ and then exploiting the multilinearity of the determinant. Try to derive this as an exercise. Next, use $u_{i, j}=\left(\mathbf{u}_{j}\right)_{i}$ and rewrite the n systems of differential equations (i.e. with $j=1,2, \ldots, n$) in a row-wise manner to see

$$
\frac{d \mathbf{r}_{i}}{d t}=\sum_{k=1}^{n} a_{i, k}(t) \mathbf{r}_{k} \quad \text { where } \quad\left(\mathbf{r}_{i}\right)_{j}=u_{i, j} .
$$

Plug these into the Leibniz product rule formula to get

$$
\frac{d w}{d t}=\operatorname{det}\left(\begin{array}{c}
\sum_{k=1}^{n} a_{1, k} \mathbf{r}_{k} \\
\mathbf{r}_{2} \\
\vdots \\
\mathbf{r}_{n}
\end{array}\right)+\operatorname{det}\left(\begin{array}{c}
\mathbf{r}_{1} \\
\sum_{k=1}^{n} a_{2, k} \mathbf{r}_{k} \\
\vdots \\
\mathbf{r}_{n}
\end{array}\right)+\cdots+\operatorname{det}\left(\begin{array}{c}
\mathbf{r}_{1} \\
\mathbf{r}_{2} \\
\vdots \\
\sum_{k=1}^{n} a_{n, k} \mathbf{r}_{k}
\end{array}\right) .
$$

In the first term on the right hand side above, use row multilinearity of the determinant to conclude

$$
\operatorname{det}\left(\begin{array}{c}
\sum_{k=1}^{n} a_{1, k} \mathbf{r}_{k} \\
\mathbf{r}_{2} \\
\vdots \\
\mathbf{r}_{n}
\end{array}\right)=\sum_{k=1}^{n} a_{1, k} \operatorname{det}\left(\begin{array}{c}
\mathbf{r}_{k} \\
\mathbf{r}_{2} \\
\vdots \\
\mathbf{r}_{n}
\end{array}\right)=a_{1,1} \operatorname{det}\left(\begin{array}{c}
\mathbf{r}_{1} \\
\mathbf{r}_{2} \\
\vdots \\
\mathbf{r}_{n}
\end{array}\right)=a_{1,1} w,
$$

where above I used the fact that

$$
\operatorname{det}\left(\begin{array}{c}
\mathbf{r}_{k} \\
\mathbf{r}_{2} \\
\vdots \\
\mathbf{r}_{n}
\end{array}\right)=0 \text { for all } k \neq 1
$$

Similarly

$$
\operatorname{det}\left(\begin{array}{c}
\mathbf{r}_{1} \\
\sum_{k=1}^{n} a_{2, k} \mathbf{r}_{k} \\
\vdots \\
\mathbf{r}_{n}
\end{array}\right)=\sum_{k=1}^{n} a_{2, k} \operatorname{det}\left(\begin{array}{c}
\mathbf{r}_{1} \\
\mathbf{r}_{k} \\
\vdots \\
\mathbf{r}_{n}
\end{array}\right)=a_{2,2} \operatorname{det}\left(\begin{array}{c}
\mathbf{r}_{1} \\
\mathbf{r}_{2} \\
\vdots \\
\mathbf{r}_{n}
\end{array}\right)=a_{2,2} w .
$$

Continue until $i=n$ to get

$$
\operatorname{det}\left(\begin{array}{c}
\mathbf{r}_{1} \\
\mathbf{r}_{2} \\
\vdots \\
\sum_{k=1}^{n} a_{n, k} \mathbf{r}_{k}
\end{array}\right)=a_{n, n} w
$$

Therefore, putting these altogether, we finally arrive at

$$
\frac{d w}{d t}=\left(a_{1,1}+a_{2,2}+\cdots+a_{n, n}\right) w=\operatorname{Tr}(A) w
$$

which is what I said I would show.

