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Abstract. Recent work of Dolgopyat shows that “typical” hyperbolic flows exhibit
rapid decay of correlations. Melbourne and Török used this result to derive statistical

limit laws such as the central limit theorem and the almost sure invariance principle
for the time-one map of such flows.

In this paper, we extend these results to equivariant observations on compact

group extensions of hyperbolic flows and their time one maps.

1. Introduction. Let Λ ⊂ M be a hyperbolic basic set for a smooth flow Tt on
a compact manifold M . Let µ denote an equilibrium measure supported on Λ,
corresponding to a Hölder continuous potential [5]. The flow has exponential decay
of correlations if given sufficiently regular observations φ, ψ : M → R, there are
constants C > 0, β > 0 (depending on φ and ψ) such that∣∣∣∫

M

φ · ψ ◦ Tt dµ−
∫
M

φdµ

∫
M

ψ dµ
∣∣∣ ≤ Ce−βt, for all t > 0.

Unlike the case of hyperbolic diffeomorphisms, it turns out that general hyperbolic
flows do not have exponential decay of correlations, even when they are topologically
mixing. Moreover, examples of Ruelle [21] and Pollicott [19] show that the rate of
decay of correlations may be arbitrarily slow.

Recently, Dolgopyat [7] proved that “typical” hyperbolic flows are better be-
haved. In particular, if it is possible to choose two periodic points in Λ whose periods
have a ratio that is Diophantine (which is almost certainly the case), then suffi-
ciently regular observations decay superpolynomially fast (faster than any specified
polynomial rate). We say that such observations satisfy rapid decay of correlations.

Melbourne and Török [13] used this result to establish statistical limit laws such
as the central limit theorem (CLT), the weak invariance principle (WIP), the law
of the iterated logarithm (LIL), and the almost sure invariance principle (ASIP)
for the time-one maps of such rapidly mixing hyperbolic flows. For example, the
CLT in [13] guarantees that for typical hyperbolic flows and sufficiently regular
observations φ : M → R of mean zero, 1√

n

∑n−1
j=0 φ ◦ Tj converges in distribution
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to a normal distribution with mean zero and variance σ2 ≥ 0. Moreover, σ2 = 0 if
and only if

∑n−1
j=0 φ ◦ Tj is uniformly bounded.

(The corresponding statistical limit laws for the hyperbolic flow itself, with
1√
n

∑n−1
j=0 φ ◦ Tj replaced by 1√

t

∫ t
0
φ ◦ Ts ds, are well-known [20, 24, 6, 14] and

do not require any mixing conditions.)
In the remainder of this paper, we shall speak only of the CLT and ASIP, but

all statements about the CLT carry through to the WIP, and all statements about
the ASIP imply the corresponding statements for the LIL.

1.1. G-extensions; discrete time. The aim of this paper is to generalise the re-
sults in [7, 13] to the equivariant context. It is convenient to recall the analogous
results for the case of diffeomorphisms [9, 12]. Suppose that Λ ⊂ M is a topologi-
cally mixing hyperbolic basic set for a diffeomorphism f : M →M and let µ denote
an equilibrium measure supported on Λ corresponding to a Hölder potential. Let
G be a compact connected Lie group with Haar measure ν and let h : Λ → G be
Hölder. The cocycle h induces a G-extension fh : Λ×G→ Λ×G defined by

fh(x, g) = (f(x), gh(x)).

Recently, we showed [10] that the G-extension fh : Λ × G → Λ × G is mixing
with respect to µ × ν for an open and dense set of cocycles h : Λ → G in the Cr

topology for all r. Moreover, we obtain C2-openness and C∞-density. (For related
references, see [1, 11, 17].) A natural question is to determine the rate of mixing.

Dolgopyat [8] considered stably mixing G-extensions and showed that under
certain hypotheses, sufficiently regular observations φ : Λ × G → R satisfy rapid
decay of correlations and the CLT. However, Dolgopyat also gave examples where
the rate of decay is arbitrarily slow (even when Λ×G is stably mixing).

On the other hand, in the context of equivariant dynamical systems it is natu-
ral [15] to consider vector-valued observations φ : Λ×G→ Rd that areG-equivariant
in the following sense. Let ρ : G → GL(Rd) denote a representation of G on Rd.
Then φ : Λ×G→ Rd is G-equivariant if φ(x, ag) = ρaφ(x, g) for all a ∈ G. Equiv-
alently, φ(x, g) = ρgv(x) for some v : Λ → Rd. From now on we suppress the ρ,
writing φ(x, g) = gv(x) and so on.

In [9], we showed that if fh : Λ × G → Λ × G is mixing (not necessarily stably
mixing), then Hölder equivariant observations φ : Λ×G → Rd satisfy exponential
decay of correlations, the CLT, and the ASIP. In [12], we show that ergodicity of
fh suffices for the CLT and ASIP. For example, the CLT in [9, 12] states that if
σh : Λ×G→ Λ×G is ergodic for a Hölder cocycle h : Λ → G, and φ : Λ×G→ Rd
is a Hölder equivariant observation of mean zero, then 1√

n

∑n−1
j=0 φ◦σ

j
h converges in

distribution to a d-dimensional normal distribution with mean zero and covariance
matrix Σ. Moreover, Σ commutes with the action of G on Rd. Finally, the CLT
is degenerate (det Σ = 0) if and only if at least one coordinate of

∑n−1
j=0 φ ◦ σ

j
h is

uniformly bounded, and typically this case can be ruled out [15].

1.2. G-extensions; continuous time. In this paper, we consider continuous time
G-extensions of the form Λ×G where Λ is a mixing basic set for a hyperbolic flow
and G is a compact connected Lie group. Let Tt denote the flow on Λ and let
ht : Λ → G be a Hölder cocycle (so hs+t = hs · ht ◦ Ts). Then we construct the
Hölder G-extension Th,t : Λ ×G → Λ ×G. Again, it follows from [10] that Λ ×G
is mixing for an open and dense set of Cr cocycles ht. As before, we say that
φ : Λ×G→ Rd is G-equivariant if φ(x, g) = gv(x) where v : Λ → Rd.
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Suppose that Λ is a mixing hyperbolic basic set for the flow Tt and that Λ×G
is ergodic. By [14], the CLT and ASIP hold for Hölder G-equivariant observations
φ : Λ × G → Rd. As in the nonequivariant context, decay of correlations for the
flow is more delicate, as are the CLT and ASIP for the time-one map T = T1. It is
these issues that we address in this paper.

The precise statements of our main results are quite technical and are deferred
until Section 2. Roughly speaking, we have the following generalisation of the
results in [7, 13].

Theorem 1.1 (Rough statement of main results). Let Λ be a mixing basic set for a
hyperbolic flow and let G be a compact connected Lie group. Consider G-extensions
Th,t : Λ×G→ Λ×G and G-equivariant observations φ : Λ×G→ Rd. For typical
basic sets Λ and Hölder G-extensions Λ×G, it is the case that sufficiently regular
G-equivariant observations satisfy rapid decay of correlations.

If we consider the time-one map Th,1 of such flows, then sufficiently regular G-
equivariant observations φ of mean zero satisfy statistical limit laws such as the
CLT and the ASIP, and typically these limit laws are nondegenerate (nonsingular
covariance).

In Theorem 1.1, we speak of typical G-extensions. Typical can be taken to
have the meaning of prevalence, governed by a Diophantine condition, as in Dolgo-
pyat [7], but stronger results are sometimes possible depending on the representa-
tion ofG on Rd. In proving rapid decay, we may decompose Rd into itsG-irreducible
subspaces and hence may suppose without loss that G acts irreducibly and faith-
fully on Rd. Note that d = 1 or d = 2 if G is abelian, and d ≥ 3 if G is not abelian.
Also, when G is abelian, we can assume that d = 2, since otherwise d = 1 and we
are in the situation of [7].

In the abelian case, G = Tm is a torus. Write h(x) = (θ1(x), . . . , θm(x)). Choose
four periodic orbits in Λ. It turns out that Λ × G is rapid mixing provided that
a certain measure one Diophantine condition involving the periods and the values
of θj along these orbits is satisfied. Hence, we obtain rapid mixing and so on for a
prevalent set of G-extensions as in [7]. (We note that rapid mixing of Λ and Λ×G
are unrelated in these results.)

When G is not abelian, the situation is somewhat simpler (just as the question
of stable ergodicity of Λ×G is simpler for G semisimple than G abelian [11]) and
we obtain rapid mixing for an open and dense prevalent set of G-extensions.

In Section 2, we give a precise statement of the results described roughly in
Theorem 1.1. The remainder of the paper is concerned with proving this theorem.
By [13], it will suffice to prove the results on rapid decay. Much of the proof is a
straightforward generalisation of the approach in Dolgopyat [7]; these parts of the
proof are carried out in Sections 3 and 4. Eventually the proof diverges from that
in [7], particularly in the case when G is nonabelian, and this part of the proof is
contained in Section 5.

2. Statement of the main results. In this section, we give a precise statement
of the results described in Theorem 1.1. We do this within the context of G-
extensions of one-sided (noninvertible) symbolic flows. This is no loss of generality,
see Remark 2.8.

Let σ : X → X be a one-sided subshift of finite type and let G be a compact
connected Lie group. If h : X → G is a measurable cocycle, we define the G-
extension σh : X × G → X × G. If r : X → R is a positive measurable roof
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function, then we define the suspension Xr = {(x, u) ∈ X × R : 0 ≤ u ≤ r(x)}/ ∼
where (x, r(x)) ∼ (σx, 0), and the suspension flow is given by Tt(x, u) = (x, u+ t).

Identifying r : X → R with a G-invariant function r : X ×G→ R, we construct

Xr ×G = (X ×G)r = {(x, g, u) ∈ X ×G× R : 0 ≤ u ≤ r(x)}/ ∼

where (x, g, r(x)) ∼ (σx, gh(x), 0). Note that Xr × G can be viewed as a G-
extension of a suspension or a suspension of a G-extension. The suspension flow is
Th,t(x, g, u) = (x, g, u+ t) computed subject to the identifications.

Let θ ∈ (0, 1). We define the Hölder spaces F θ(X,R) and F θ(X,G) in the usual
way [9, 16]. Recall that ‖v‖θ = |v|∞ + |v|θ. We suppose that r ∈ F θ(X,R) and
h ∈ F θ(X,G). Given a continuous potential function F : Xr → R, we define
f(x) =

∫ r(x)
0

F (x, u)du. Suppose that f ∈ F θ(X,R) and let µ be the equilibrium
measure on X corresponding to f . Set r̄ =

∫
X
rdµ and define the invariant measure

µr = µ× `/r̄ where ` is Lebesgue measure. Then µr is the equilibrium measure on
Xr corresponding to F . Denoting Haar measure on G by ν, we form the invariant
product measures m = µ × ν on X × G and mr = µr × ν on Xr × G. Again,
mr = m× `/r̄.

As in [9], we consider the Hölder space F θG(Xr×G,Rd) of equivariant observations
φ(x, g, u) = gv(x, u) where v ∈ F θ(Xr,Rd). Define F k,θG (Xr × G) ≈ F k,θ(Xr)
to consist of those equivariant observations φ such that ∂jtφ ∈ F θG(Xr × G) for
j = 0, 1, . . . , k where ∂tφ = d

dtφ ◦ Th,t|t=0 denotes the derivative of φ along the
flow. [Recall that the metric on {(x, t) ∈ X × R | 0 ≤ t < r(x)} ⊂ Xr is given by
d
(
(x, t), (x′, t′)

)
= dθ(x, x′) + |t − t′|, with dθ the metric on the shift space. Note

that functions in F k,θG , k ≥ 1, are continuous along the flow, but this is not the case
for functions in F θG.]

Given φ ∈ L∞(Xr × G,Rd), ψ ∈ L1(Xr × G,Rd), we define the correlation
function ρφ,ψ : [0,∞) → Matd(R) to be

ρφ,ψ(t) =
∫
Xr×G

φ(ψ ◦ Tt)T dmr −
∫
Xr×G

φdmr

∫
Xr×G

ψT dmr.

The aim is to prove rapid decay of ρφ,ψ(t) as t→∞.
Recall from the introduction that we may suppose without loss that G acts

irreducibly and faithfully on Rd, d ≥ 2. Moreover G is abelian if d = 2 and
nonabelian if d ≥ 3. Recall also that the Gibbs measure µr on Xr corresponds to a
continuous potential F : Xr → R for which f(x) =

∫ r(x)
0

F (x, u)du lies in Fθ(X,R).

Remark 2.1. In the following, we say that a constant is uniform in Fθ if it varies
continuously with f , r, and h in the Hölder topology Fθ for a fixed value of θ.

Theorem 2.2. Suppose that Xr × G is mixing and that G is nonabelian. Then
there exists an open and dense (and prevalent) set of cocycles h ∈ F θ(X,G) and a
uniform constant C > 0 with the following property: For any n ≥ 1, there exists a
uniform integer k ≥ 1 such that

|ρφ,ψ(t)| ≤ C‖φ‖k,θ|ψ|1/tn, for all t > 0

for all φ ∈ F k,θG (Xr ×G) and ψ ∈ L1
G(Xr ×G).

Theorem 2.3. Suppose that Xr ×G is mixing and that G is abelian. Choose four
fixed points xj ∈ X, j = 1, . . . , 4 for the subshift σ : X → X. Then there is a full
measure set Q ⊂ R4 ×G4 with the following property:



STATISTICAL PROPERTIES OF COMPACT GROUP EXTENSIONS 83

If r ∈ F θ(X,G), h ∈ F θ(X,G) are such that (r(x1), . . . r(x4), h(x1), . . . , h(x4)) ∈
Q, then there exists a constant C > 0 and for any n ≥ 1, there exists an integer
k ≥ 1 such that

ρφ,ψ(t) ≤ C‖φ‖k,θ|ψ|1/tn, for all t > 0

for all φ ∈ F k,θG (Xr ×G) and ψ ∈ L1
G(Xr ×G).

Remark 2.4. In the nonabelian case, the validity of rapid mixing depends only on
the cocycle h (independent of the roof function r). Moreover, the constant C and
required differentiability k are uniform.

In contrast, the abelian case is analogous to the case G = 1 in Dolgopyat [7]:
rapid mixing depends also on the roof function r, and the constant C depends very
delicately on r and h (and is uniform in f).

In both cases, rapid mixing of Xr × G is independent of rapid mixing of Xr.
(Rapid mixing of Xr is detected by the trivial representations of G which we have
excluded.)

Lemma 2.5 (cf. [13]). Let (Y,m) be a measure space, S : Y → Y an ergodic
measure preserving transformation, and φ : Y → Rd a mean zero L∞ observation.
Suppose that there exist constants C > 0 and n > 2 such that

|
∫
Y

φ (ψ ◦ Sj)T dm| ≤ C|ψ|1/jn,

for all j ≥ 1 and all ψ ∈ L1(Y,Rd). Define φN =
∑N−1
j=0 φ ◦ Sj. Then

(a) The limit Σ = limN→∞
1
N

∫
Y
φNφ

T
N dm exists and defines a d × d covariance

matrix. Moreover, Σ is singular if and only if there exists c ∈ Rd nonzero and
χ ∈ L∞(Y,R) such that c · φ = χ ◦ S − χ almost everywhere.

(b) (CLT): 1√
N
φN −→d N(0,Σ) as N →∞.

Proof. A similar result was proved in [13], except that decay was assumed only
against L∞ observations and the conclusions were correspondingly weaker. But
arguing as in [13, Theorem 2], we find that φ = φ̃+χ◦S−χ where χ ∈ L∞(Y,Rd) and
{φ̃ ◦ T j} is a sequence of reverse martingale differences. Moreover, the covariance
matrix for φ is identical to the one for φ̃ and is given by Σ =

∫
Y
φ̃φ̃T . This

establishes part (a).
It follows from the martingale approximation argument in [13, Theorem 2] that

if c ∈ Rd, then c · φ satisfies the CLT with variance cTΣc. Hence part (b) follows
from the Cramer-Wold technique.

Theorem 2.6. Let G be a compact connected Lie group acting (not necessarily
irreducibly or faithfully) on Rd. Suppose that the suspension Xr×G is mixing and let
φ ∈ F k,θG (Xr ×G) be an equivariant observation with mean zero (

∫
Xr×G φdm = 0).

Define φN =
∑N−1
j=0 φ ◦ Th,j.

Suppose that φ : Xr×G→ Rd satisfies rapid mixing as in Theorems 2.2 and 2.3
with n > 2. Then
(a) The limit Σ = limN→∞

1
N

∫
Xr×G φNφ

T
N dm exists and defines a d×d covariance

matrix that commutes with the action of G on Rd. Moreover, Σ is singular if and
only if there exists c ∈ Rd nonzero such that c · φN is uniformly bounded.

(b) (CLT): 1√
N
φN −→d N(0,Σ) as N →∞.
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(c) (ASIP): For each c ∈ Rd, after possibly enriching the probability space
Xr ×G without changing the distribution of the sequence {c ·φN}, there exists
a one-dimensional Brownian motion Wc with variance cTΣc such that for any
α > 0,

c · φN = Wc(N) +O(N1/4+α) as N →∞
almost everywhere.

Proof. Parts (a) and (b) are immediate from Lemma 2.5 except for the statement
about nondegeneracy. But if Σ is singular, then it follows from Livšic regularity
that c · φ = χ ◦ T − χ for c ∈ Rd nonzero and χ Hölder. Part (c) requires more
work and we only sketch the details which are completely analogous to those in [9]
combined with [13]. The idea is to prove the ASIP for observations on X̂r×G, where
X̂ is the two-sided version of the subshift X, and without loss of generality to prove
this in backwards time. This ensures that the martingale approximation yields a
genuine martingale (rather than a sequence of reverse martingale differences). The
next step is to approximate the observation by one that depends only on future
coordinates, at which point the technique of Strassen [23] can be applied. See [13,
Section 3] and [9] for further details.

Remark 2.7. (a) In fact, the CLT and ASIP hold for all n > 1. However, the
limit in part (a) need not hold, so the covariance matrix Σ is defined somewhat
differently. (For example, Σ =

∫
Xr×G φ̃ φ̃

T dm where φ̃ is the martingale approxi-
mation for φ.)
(b) An argument in [15] shows that Σ is nonsingular for an open, dense, and preva-
lent set of observations φ ∈ F k,θG (Xr ×G).
(c) We conjecture that a d-dimensional version of the ASIP (without taking one-
dimensional projections) is valid.
(d) We note once again that the corresponding results for the flow itself (with
φN =

∑N−1
j=0 φ ◦ Th,j replaced by

∫ t
0
φ ◦ Th,t) are considerably more elementary [14]

and do not require mixing hypotheses on Xr ×G.

Remark 2.8. It follows from standard arguments that the results stated above
for G-extensions of suspensions of one-sided symbolic flows apply equally to G-
extensions of basic sets for (invertible) hyperbolic flows. We now sketch these ar-
guments.

When G = 1, we can reduce from a general hyperbolic basic set first to a suspen-
sion of a two-sided subshift of finite type [2, 3, 5], and second to a suspension of a
one-sided subshift of finite type [22, 4] (the second step was already mentioned in
the proof of Theorem 2.6. The same reduction for G-extensions follows as in [9].
The results for basic sets are then immediate from the results for suspensions of
two-sided subshifts. The almost sure invariance principle passes between one-sided
and two-sided subshifts by combining the arguments in [9, 13]. The rapid decay
result passes from one-sided to two-sided subshifts by an approximation argument,
cf. [9] (which requires further that ψ ∈ F θG(Xr ×G) with |ψ|1 replaced by ‖ψ‖θ).

3. Complex transfer operators and rapid mixing. In this section, we show
that the absence of approximate eigenfunctions for a family of complex equivariant
Ruelle transfer operators implies rapid mixing. The proof is a straightforward
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generalisation of an argument of Dolgopyat [7] to the equivariant context. A good
background reference is Parry and Pollicott [16].

In Section 2, we introduced the potential f ∈ F θ(X,R) with corresponding
equilibrium measure µ on X. The Ruelle transfer operator Lf : F θ(X,R) →
F θ(X,R) is defined by (Lfv)(x) =

∑
σy=x e

f(y)v(y). Without loss [16], we assume
that f is normalised so that Lf1 = 1.

Recall that r ∈ F θ(X,R) is the roof function defining the suspension flow Xr and
that h ∈ F θ(X,G) is the cocycle defining the G-extension σh : X × G → X × G.
Suppose that Rd is a fixed representation of G. For each s ∈ C, we define the
complex equivariant Ruelle operator Lf+sr,h on F θ(X,Cd) to be

(Lf+sr,hv)(x) =
∑
σy=x

e(f+sr)(y)h(y)−1v(y).

The operator Lf+sr,h is a combination of the equivariant Ruelle operator Lf,h and
the complex Ruelle operator Lf+sr both of which can be found in [16].

Theorem 3.1. Suppose that Xr × G is mixing. Of the following statements, (a)
implies (b).

(a) Absence of approximate eigenfunctions for Lf+ibr,h: ∃α > 0 such that
‖(I − Lf+ibr,h)−1‖θ ≤ |b|α, for all b ∈ R with |b| > 2.

(b) Rapid mixing: For any n ≥ 1, ∃k ≥ 1, C > 0 such that for all φ ∈
F k,θG (Xr ×G) and ψ ∈ L1

G(Xr ×G),∣∣∫ φ(ψ ◦ Tt)T dmr −
∫
φdmr

∫
ψT dmr

∣∣ ≤ C‖φ‖k,θ|ψ|1/tn, for all t > 0.

In the remainder of this section, we prove Theorem 3.1. We begin with three
preliminary propositions.

Proposition 3.2. Suppose that there exist constants α1 > 1, C1 > 1 such that

‖(I − Lf+ibr,h)−1‖θ ≤ C1|b|α1 ,

for all b ∈ R with |b| large enough. Choose α2 > α1 + 1. Then there is a constant
b0 > 1 such that

‖(I − Lf−sr,h)−1‖θ ≤ 2C1|b|α1 ,

for all s = a+ ib ∈ C satisfying |b| ≥ b0, |a| ≤ |b|−α2 .

Proof. Recall the identity

(I − Lf−sr,h)−1 = (I −A)−1(I − Lf−ibr,h)−1,

where

A = (I − Lf−ibr,h)−1(Lf−sr,h − Lf−ibr,h) = (I − Lf−ibr,h)−1Lf−ibr,hM,

where Mv = e−arv − v.
For |a| small enough, |e−ar − 1|∞ ≤ 2|a||r|∞, and |e−ar − 1|θ ≤ 2e|a||r|∞ |a||r|θ.

It follows that ‖M‖θ ≤ 4e|a||r|∞ |a|‖r‖θ. Provided |a| ≤ |b|−α2 , we have ‖M‖θ ≤
D|b|−α2 for some constant D. From the basic inequality (Proposition 4.2(ii)), it
follows that ‖Lf−ibr,h‖θ ≤ 2C6|b|. Combining these estimates with the hypothesis
of the proposition yields

‖A‖θ ≤ E|b|α1+1−α2 ,

and hence (I − A) is invertible for |b| large enough provided α2 > α1 + 1. Indeed
we can arrange that ‖(I −A)−1‖θ ≤ 2 on this region proving the result.
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Proposition 3.3. Given v ∈ L1(Xr,Rd) and s ∈ C, define

v̂s(x) =
∫ r(x)

0

v(x, u)e−sudu.

Then v̂s ∈ L1(X,Cd) and |v̂s|1 ≤ D|v|1 where D = |r|∞e|Re s||r|∞ .
Similarly, if v ∈ L∞(Xr,Rd) then v̂s ∈ L∞(X,Cd) and |v̂s|∞ ≤ D|v|∞.
Moreover, if v ∈ F θ(Xr,Rd) then v̂s ∈ F θ(X,Cd) and ‖v̂s‖θ ≤ (D + E)‖v‖θ

where E = |r|θe|Re s||r|∞ .

Proof. To prove the L1 estimate, compute that∫
X

|v̂s(x)|dµ ≤
∫
X

∫ r(x)

0

|v(x, u)e−su|dudµ ≤ |r|1
∫
Xr

|v(x, u)|dµre|Re s||r|∞ ,

so that |v̂s|1 ≤ D|v|1. The L∞ estimate is similar. Moreover,

|v̂s(x)− v̂s(y)| = |
∫ r(x)

0

v(x, u)e−sudu−
∫ r(y)

0

v(y, u)e−sudu|

≤ |r(x)− r(y)|e|Re s||r|∞ |v|∞ + |r|∞e|Re s||r|∞ |v(x, u)− v(y, u)|

≤ |r|θdθ(x, y)e|Re s||r|∞ |v|∞ +D|v|θdθ(x, y),
so that |v̂s|θ ≤ E|v|∞ +D|v|θ. Hence ‖v̂s‖θ ≤ (D + E)‖v‖θ.

In the next proposition, we write Yr instead of Xr ×G, since the result does not
depend upon the structure of being a G-extension. Thus Yr is the suspension of a
map T : Y → Y with suspension flow Tt.

Proposition 3.4. Let φ, ψ ∈ L∞(Yr,Rd). Suppose that φ is k-times differentiable
along the flow direction and that ψ has support lying within {(y, s) ∈ Y × R :
s ∈ [ε, r(y) − ε]} for some ε > 0. Then ρ

(k)
φ,ψ = (−1)kρ(∂k

t φ),ψ where ∂t denotes
differentiation with respect to the flow direction.

Proof. To simplify the notation, we suppose that φ or ψ has mean zero, and we
suppose that d = 1.

Write ρφ,ψ(t) =
∫
Y
S(y, t)dm, where

S(y, t) =
∫ r(y)

0

φ(y, u)ψ(Tt(y, u))du =
∫ r(y)

0

φ(y, u)ψ(Tny, u+ t− rn(y))du.

Here, the lap number n = n(y, u + t) is defined by the condition rn(y) ≤ u + t <
rn+1(y). Note that the condition on the support of ψ guarantees that n is locally
constant with respect to u in the above integral. Moreover, by assuming that φ and
ψ are extended to be zero outside {(y, s) ∈ Y × R | 0 ≤ s ≤ r(y)}, we can write

S(y, t) =
∫ ∞

−∞
φ(y, u)ψ(Tny, u+ t− rn(y))du

=
∫ ∞

−∞
φ(y, u− t)ψ(Tny, u− rn(y))du.

Hence

∂tS(y, t) = −
∫ ∞

−∞
∂tφ(y, u− t)ψ(Tny, u− rn(y))du

= −
∫ r(y)

0

∂tφ(y, u)ψ(Tt(y, u))du.
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This proves the required result for k = 1, and the general case follows by induction.

The strategy behind the proof of Theorem 3.1 is to show that the Laplace trans-
form of ρ satisfies a Paley-Wiener Theorem so that ρ decays rapidly as t → ∞.
First, we write ρ, which is defined for t ≥ 0, as the restriction to t ∈ [0,∞) of a
convenient L∞ function R : R → R such that R(t) = 0 for t < −|r|∞. This func-
tion R is given in Proposition A.1. The Laplace transform R̂(s) =

∫∞
0
e−tsR(t)dt is

defined in the right-hand complex plane, and our hypotheses guarantee a suitable
analytic extension of R̂ across the imaginary axis. (In fact, a general result of Polli-
cott [19] implies that such an analytic continuation exists, but we shall not require
this result.) Using the Laplace inversion formula, the existence of this extension
into the left-half-plane gives the desired decay of R (and hence ρ) as t→∞.

Lemma 3.5. Suppose that Xr × G is mixing. Assume the conditions of Proposi-
tion 3.2 and let φ ∈ F θG(Xr ×G), ψ ∈ L1

G(Xr ×G) with
∫
Xr×G φdmr = 0. Write

φ(x, g, u) = gv(x, u), ψ(x, g, u) = gw(x, u),

where v ∈ F θ(Xr,Rd), w ∈ L1(Xr,Rd). Then

(i) R̂(s) = R̂(a+ ib) has an analytic continuation to the region A∪{a > 0} where

A = {|a| < ε, |b| < b0 + 1} ∪ {|a| < |b|−α2 , |b| > b0}.

(ii) The analytic continuation is given by

R̂(s) =
1
r̄

∫
G

g

∫
X

{
(I − Lf−sr,h)−1v̂−s

}
ŵTs dµ g

T dν, (3.1)

where v̂s ∈ F θ(X,Cd), ŵs ∈ L∞(X,Cd) are defined as in Proposition 3.3.
(iii) There exists a constant C such that |R̂(s)| ≤ C‖φ‖θ|ψ|1 max{1, |b|α1} for all

s = a+ ib ∈ A.

Proof. Since R is bounded, R̂ is analytic for Re s > 0. It is well-known (see the
appendix) that formula (3.1) is valid for Re s > 0. Since Xr × G is ergodic and
Fix(G) = 0, the usual convexity argument [16, 9] shows that 1 is not in the spectrum
of Lf,h. Similarly, weak mixing of Xr ×G guarantees that 1 is not in the spectrum
of Lf+ibr,h for all b 6= 0. It follows that the right-hand-side of (3.1) continues
analytically to an open set that contains the closed half-plane Re s ≥ 0.

Proposition 3.2 guarantees that the right-hand-side of (3.1) is analytic on A.
Altogether, we have that the right-hand-side continues analytically to the desired
region and hence formula (3.1) is valid.

It follows immediately from Proposition 3.2 that

|R̂(s)| ≤ C ′‖v̂−s‖θ|ŵs|1 max{1, |b|α1},

on the region A. Hence, part (iii) follows from Proposition 3.3 since Re s is bounded
on A.

Proof of Theorem 3.1 By an elementary approximation argument, we may
suppose that ψ satisfies the support condition of Proposition 3.4. By condition (a)
of Theorem 3.1, we may assume that the conclusions of Proposition 3.2 and hence
Lemma 3.5 are valid.
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By Taylor’s Theorem, for any k ≥ 1, Rφ,ψ(t) = Pk−1(t) +Rk(t) where

Pk−1(t) =
k−1∑
j=0

R
(j)
φ,ψ(0)
j!

tj , Rk(t) =
∫ t

0

R
(k)
φ,ψ(s)

(t− s)k−1

(k − 1)!
ds.

Note that Rk(t) is the convolution of R(k)
φ,ψ and the function g(t) = χ[0,∞)(t) ·

tk−1/(k − 1)! (χS stands for the characteristic function of the set S). By Proposi-
tion 3.4 and Lemma 3.5(iii),

|R̂(k)
φ,ψ| = |R̂(∂k

t φ),ψ| ≤ C1‖∂kt φ‖θ|ψ|1 max{1, |b|α1} ≤ C1‖φ‖k,θ|ψ|1 max{1, |b|α1}

in the region A, while |ĝ(s)| = 1/|s|k ≤ 1/|b|k. Hence

|R̂k(a+ ib)| ≤ C1‖φ‖k,θ|ψ|1 max{1, |b|α1−k}.

By Lemma 3.5(i), R̂ has an analytic continuation beyond the imaginary axis to
a region including the contour Γ defined by

a = max{−ε,−|b|−α2}.

Hence, by the Laplace inversion formula,

R(t) = C2

∫
Γ

estR̂(s)ds = C2(A(t) +B(t))

where

A(t) =
∫

Γ

estP̂k−1(s)ds, B(t) =
∫

Γ

estR̂k(s)ds.

Now, P̂k−1(s) =
∑k−1
j=0 R

(j)
φ,ψ(0)/sj+1 is analytic in the left-half-plane. Moving the

contour of integration to a = −ε, it is easily verified that |A(t)| ≤ C3‖φ‖k,θ|ψ|1e−εt.
The second term satisfies

|B(t)| ≤ C4‖φ‖k,θ|ψ|1
{
e−εt +

∫ ∞

b0

exp{−|b|−α2t}|b|α1−kdb
}
. (3.2)

Since α1, α2 are fixed, for any n we can choose k sufficiently large that R(t) con-
verges to zero faster than 1/tn.

Remark 3.6. In this section, it is clear that k = k(α, n) depends only on α and
n. In fact, it suffices that k > (α + 1)(n+ 2). To see this, recall that α2 > α1 + 1
suffices in Proposition 3.2 and make the substitution y = |b|−α2t in the integrand
in (3.2).

The constant C is uniform in the Hölder functions f , r, h, as well as the expo-
nents α and n.

4. Approximate eigenfunctions. We define the operator Msr,h on F θ(X,Cd)
to be

Msr,hv = e−srhv ◦ σ.

Note that Lf+sr,hMsr,h = I for all s ∈ C.

Theorem 4.1. Suppose that G is abelian. Of the following statements, (c) im-
plies (d).

(c) Approximate eigenfunctions for Lf+ibr,h: For any α > 0, there exists
b arbitrarily large such that ‖(I − Lf+ibr,h)−1‖θ ≥ |b|α.
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(d) Approximate eigenfunctions for Mibr,h: For any α > 0 there exists a
fixed β > 0, b arbitrarily large, and w ∈ F θ with |w(x)| = 1 for all x ∈ X
such that

|M [β ln |b|]
ibr,h w − w|∞ ≤ 1/|b|α.

In the remainder of this section, we prove Theorem 4.1. We require the following
standard estimates, of which the first is trivial, the second is the “basic inequality”,
and the third is the “Ruelle-Perron-Frobenius property”. Throughout this section,
notation such as Ci and αj has been chosen to conform with the notation in [7]
wherever possible.

Proposition 4.2. There exist constants C6, C7 > 0, ρ ∈ (0, 1) such that for all
v ∈ F θ(X,Cd), n ≥ 1, b ∈ R, |b| > 1,

(i) |Lnf+ibr,h|∞ ≤ 1,
(ii) |Lnf+ibr,hv|θ ≤ C6|b||v|∞ + θn|v|θ,
(iii) ‖Lnf v‖θ ≤

∫
|v|dµ+ C7ρ

n‖v‖θ.

Remark 4.3. If we define ‖v‖N = |v|∞+|v|θ/N , then ‖Lnf+ibr,h‖N ≤ 2 for all N ≥
C6|b|, |b| > 1.

Lemma 4.4 ( Dolgopyat [7, Lemma 2] ). If |λ| = 1, then for all n,N ≥ 1,

‖(λ− Lnf )
−1‖N ≤ C8

|1− λ|

(
ln

1
|1− λ|

+ lnN + n
)
,

where ‖v‖N = |v|∞ + |v|θ/N .

The following lemma states, roughly speaking, that if Lf+ibr,h has an approxi-
mate eigenfunction v corresponding to eigenvalue one, then the iterates of v remain
close to the unit circle for a long time.

Lemma 4.5. Let G be a compact connected Lie group (not necessarily abelian)
acting on Rd. Then, for any α′, β > 0, there exists a fixed α > 0 such that if, for b
large enough,

(1) ‖(I − Lf+ibr,h)−1‖θ ≥ |b|α,
then

(2) there exists v ∈ F θ(X,Cd) with |v|∞ ≤ 1 and |v|θ ≤ C6|b|, such that

|(Lnf+ibr,hv)(x)| ≥ 1− 1/|b|α
′
, for all x ∈ X and all n, 0 ≤ n ≤ 3β ln |b|.

Moreover, α = α(α′) can be chosen so that α→∞ as α′ →∞.

Proof. This is identical to Dolgopyat [7, Lemma 3] (or actually the slightly stronger
result obtained by examining the proof).

For the remainder of this section we restrict to the abelian case, so G = Tm.
We have already reduced to the case where G acts irreducibly on R2. This leads
via the approach in Section 3 to a (nonirreducible) action of G on C2. In proving
Theorem 4.1, we may reduce once more to an irreducible action of G on C.

Lemma 4.6. Let G be a compact connected abelian Lie group acting on C. For
any α′′ > 0, there exists α′, β > 0 such that if condition (2) of Lemma 4.5 holds for
some large enough b, then there exist w ∈ F θ(X,C) and ϕ ∈ R such that |w(x)| = 1
for all x ∈ X, |w|θ ≤ 4C6|b| and

|M n̄
ibr,hw − eiϕw|∞ ≤ 8/|b|α

′′
,
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where n̄ = [β ln |b|].

Proof. Given α′′ > 1, choose α′ and β so that

β = (−α′′ − 2)/ ln θ, α′ = 2α′′ + β|f |∞.

For b we require that |b| ≥ max{4C6, 1/θ} and |b|α′ ≥ 2.
Choose v as in Lemma 4.5(2) and write v = sw where 0 < s(x) ≤ 1 and

|w(x)| = 1 for all x. Similarly, write Ln̄f+ibr,hv = v̄ = s̄w̄. By definition,

s̄(x)w(x) =
∑
σn̄y=x

e(f+ibr)n̄(y)hn̄(y)−1s(y)w(y).

Hence ∑
σn̄y=x

efn̄(y)
[
1− eibrn̄(y)hn̄(y)−1s(y)w(y)(w(x))−1

]
= 1− s̄(x) ≤ 1/|b|α

′
.

Since each term has positive real part, we deduce that

efn̄(y) Re
[
1− eibrn̄(y)hn̄(y)−1w(y)(w(x))−1

]
≤ 1/|b|α

′
,

for each x, y with σn̄y = x. Now, e−fn̄(x) ≤ en̄|f |∞ ≤ eβ|f |∞ ln |b| = |b|β|f |∞ , for all
x ∈ X+, so that

Re(1− eibrn̄(y)hn̄(y)−1w(y)(w(x))−1) ≤ 1/|b|2α
′′
,

Hence,

|eibrn̄(y)hn̄(y)−1w(y)− w(x)| ≤ 2/|b|α
′′
. (4.3)

Similarly, defining L2n̄
f+ibr,hv = ¯̄v = ¯̄s w,

|eibrn̄(y)hn̄(y)−1w(y)− w(x)| ≤ 2/|b|α
′′
, (4.4)

for all x, y ∈ X+ with σn̄y = x.
Fix y0 ∈ X+, and define w(y0) = eiϕ1 , w(y0) = eiϕ2 . The choice of β guarantees

that θn̄ ≤ 1/|b|α′′+1. Hence n̄ is sufficiently large that given any x ∈ X+ there
exists y with σn̄y = x such that dθ(y, y0) < 1/|b|α′′+1. Since |w|θ, |w|θ < 4C6|b|
(because |v̄(u)|, |v(u)| ≥ 1/2 at each u), it follows that

|w(y)− eiϕ1 | ≤ 1/|b|α
′′
, |w(y)− eiϕ2 | ≤ 1/|b|α

′′
.

Hence, for this choice of y,

|eibrn̄(y)hn̄(y)−1eiϕ1 − w(x)| ≤ 3/|b|α
′′
, |eibrn̄(y)hn̄(y)−1eiϕ2 − w(x)| ≤ 3/|b|α

′′
,

so that |w(x)− eiϕw(x)| ≤ 6/|b|α′′ for all x ∈ X+, where ϕ = ϕ1 − ϕ2.
Substituting into (4.4) yields

|eibrn̄(y)hn̄(y)−1w(y)− e−iϕw(x)| ≤ 8/|b|α
′′

for all x, y with σn̄y = x. This completes the proof.

Corollary 4.7. Suppose that condition (c) of Theorem 4.1 holds. Then, for any
α > 0, there exists a fixed β > 0 and there exists b arbitrarily large such that

(1) There exists w ∈ F θ(X,C) with |w(x)| = 1 for all x ∈ X and |w|θ ≤ 4C6|b|,
and there exists ϕ ∈ R, such that

|M n̄
ibr,hw − eiϕw|∞ ≤ 1/|b|α, (4.5)

where n̄ = [β ln |b|], AND
(2) ‖(I − Lf+ibr,h)−1‖θ ≥ |b|α.
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Proof. In view of condition (c) of Theorem 4.1, Lemmas 4.5 and 4.6 imply that for
any α′′ > 0 there are α, β > 0 such that (4.5) holds with 1/|b|α′′ provided (2) holds
for b large enough. Using (c) of Theorem 4.1 once more, we can pick b large enough
so that (2) holds with |b|α′′ . That is, we can have the same exponent of |b| in (4.5)
and (2).

For each N > 1, we define ‖v‖N = |v|∞ + |v|θ/N .

Proposition 4.8. Suppose that condition (1) in Corollary 4.7 is valid. Define
Kv = e−iϕwLn̄f

(
vw−1

)
. Then there exists a constant C20 > 0 such that

‖Ln̄f+ibr,h −K‖N ≤ C20/|b|α,

where N = |b|α+1.

Proof. Compute that

([Ln̄f+ibr,h −K]v)(x) =
∑
σn̄y=x

efn̄(y)
(
eibrn̄(y)hn̄(y)−1 − e−iϕw(σn̄y)/w(y)

)
v(y)

=
∑
σn̄y=x

efn̄(y)eibrn̄(y)hn̄(y)−1
(
w(y)− e−iϕe−ibrn̄(y)hn̄(y)w(σn̄y)

)
v(y)/w(y)

=
∑
σn̄y=x

efn̄(y)eibrn̄(y)hn̄(y)−1
(
(I − e−iϕM n̄

ibr,h)w
)
(y)v(y)/w(y)

It follows immediately that

|(Ln̄f+ibr,h −K)v|∞ ≤ |v|∞/|b|α. (4.6)

The computation of |(Ln̄f+ibr,h −K)v|θ leads to six terms involving |f |θ, |b||r|θ,
|h|θ, |(I−M n̄

ibr,h)w|θ, |v|θ and |1/w|θ. These terms have estimates (up to a universal
constant) of the form

|f |θ(1− θ)−1|v|∞/|b|α, |r|θ(1− θ)−1|v|∞/|b|α−1, |h|θ(1− θ)−1|v|∞/|b|α,(
1 + |b||r|θ(1− θ)−1

)
|v|∞ + 2|w|θ|v|∞, |v|θ/|b|α, |1/w|θ|v|∞/|b|α

Note that |1/w|θ ≤ |w|θ ≤ 4C6|b|. The fourth and fifth terms are the crucial ones,
demonstrating that

|(Ln̄f+ibr,h −K)v|θ ≤ C17|b||v|∞ + |v|θ/|b|α. (4.7)

By (4.6) and (4.7),

‖Ln̄f+ibr,h −K‖N ≤ 1/|b|α + C17|b|/N,

for all N ≥ 1. The result follows.

Proof of Theorem 4.1 Choose α∗ = (α − 2)/2. There exists b arbitrarily large
such that conditions (1) and (2) of Corollary 4.7 are simultaneously valid. Let w,
n̄, K and ϕ be as in condition (1). In particular, by Proposition 4.8,

‖Ln̄f+ibr,h −K‖N ≤ C20/|b|α
∗
, (4.8)

where N = |b|α∗+1.
Choosing b sufficiently large, we may suppose that N > 4C6|b|. We claim that

|eiϕ − 1| ≤ 1/|b|α
∗−2 = 1/|b|(α−6)/2. (4.9)



92 MICHAEL FIELD, IAN MELBOURNE, MATTHEW NICOL & ANDREI TÖRÖK

Suppose for contradiction that |eiϕ − 1| ≥ 1/|b|α∗−2. Then by Lemma 4.4,

‖(I − e−iϕLn̄f )
−1‖N ≤ C18|b|α

∗−1.

Moreover, multiplication by w has norm less than 2 (since N > 4C6|b|), and so

‖(I −K)−1‖N ≤ C19|b|α
∗−1. (4.10)

Substituting (4.8),(4.10) into the identity A−1 = B−1 + A−1(B − A)B−1 yields
‖(I − Ln̄f+ibr,h)

−1‖N ≤ C21|b|α
∗−1 and so

‖(I − Ln̄f+ibr,h)
−1‖θ ≤ C21|b|2α

∗
.

It follows from the identity (I −A)−1 = (I +A+ · · ·+An−1)(I −An)−1 that

‖(I − Lf+ibr,h)−1‖θ ≤ C22|b|2α
∗+1 ln |b| = C22|b|α−1 ln |b|.

This contradicts condition (2) of Corollary 4.7, thus proving the claim.
Combining (4.9) with condition (1) of Corollary 4.7 implies that |M n̄

ibr,hw −
w|∞ ≤ 2/|b|(α−6)/2. Since α is arbitrary, we have proved the theorem.

Remark 4.9. In this section, the constants Cj are uniform in f , r and h (in the
fixed Hölder topology). The exponent α depends continuously on f (via Lemma 4.5).
The same is true of the magnitude of b in the expression “there exists b arbitrarily
large”.

5. Proof of Theorems 2.2 and 2.3. In this section, we prove first Theorem 2.3
(the abelian case) and then Theorem 2.2 (the nonabelian case).

5.1. The abelian case.

Lemma 5.1. Suppose that G is abelian. Consider suspensions Xr×G of one-sided
subshifts of finite type, defined by the roof function r ∈ F θ(X,R) and the cocycle
h ∈ F θ(X,G). Suppose that X possesses four fixed points xj, j = 1, . . . , 4, and write
r(xj) = `j, h(xj) = (eiθ1j , . . . , eiθdj ). Then for almost every `j , θij ∈ R, the operator
Mibr,h does not have approximate eigenfunctions in the sense of Theorem 4.1(d).

Proof. Without loss, we may restrict to the case when `j 6= 0 for j = 1, . . . , 4 and
`3θ4 − `4θ3 6= 0. Suppose that Mibr,h has approximate eigenfunctions. Fix α > 4.
Then there is a sequence of functions wk ∈ F θ(X,R) with |wk(x)| ≡ 1 satisfying

|M n̄k

ibkr,h
wk − wk|∞ = O(|bk|−α),

where |bk| → ∞ as k →∞ and n̄k = [β ln |bk|].
Since the irreducible representations of G are one-dimensional, we may suppose

without loss that d = 1. Inserting the data for the four fixed points yields the
conditions

bkn̄k`j + n̄kθj − 2πmj = O(|bk|−α), (5.11)

where mj = mj(bk) ∈ Z for j = 1, . . . , 4. In particular,

|mj | = O(|bk| ln |bk|), (5.12)

for each j. Write m = (m1,m2,m3,m4) and ω = (−θ2, θ1, τθ4,−τθ3) where
τ = (`1θ2 − `2θ1)/(`3θ4 − `4θ3). This choice of τ together with (5.11) leads to
cancellations in 〈m,ω〉 and we compute that 〈m,ω〉 = O(|bk|−α). Let α′ ∈ (4, α).
By (5.12), 〈m,ω〉 = O(|m|−α′). This Diophantine condition holds for |m| → ∞ and
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hence defines a set of measure zero of ω ∈ R4 since α′ > 4. It follows easily that
the corresponding set of `j , θj ∈ R8 has measure zero.

Corollary 5.2. Typically, suspensions Xr × G of toral extensions of one-sided
subshifts of finite type are rapid mixing in the sense of Theorem 3.1(b).

Proof. By Lemma 5.1, typically the condition of Theorem 4.1(d) fails. This implies
the failure of Theorem 4.1(c), equivalently the validity of Theorem 3.1(a) and hence
the validity of Theorem 3.1(b).

5.2. The nonabelian case. In this section, we suppose that G is a compact con-
nected nonabelian Lie group acting irreducibly and faithfully on Rd (so d ≥ 3). In
particular, if ξ is a nonzero vector in Cd, then the subspace C{ξ} is not invariant
under G. Moreover:

Lemma 5.3. Suppose that G acts irreducibly and unitarily on Cd, d ≥ 2. Let
D ⊂ G×G consist of those elements (g1, g2) such that there exists a unit vector ξ
such that gjξ ∈ C{ξ} for j = 1, 2. Then the complement of D is open and of full
measure in G×G.

Proof. Clearly, D is closed. Almost all pairs of elements (g1, g2) topologically gen-
erate G. If such a pair lies in D, then the corresponding unit vector ξ has the
property that C{ξ} is an invariant subspace for G, contradicting irreducibility with
d ≥ 2. Hence almost all pairs do not lie in D.

Theorem 2.2 is an immediate consequence of the next Proposition.

Proposition 5.4. Suppose that G acts irreducibly and unitarily on Cd, d ≥ 2, and
Xr ×G is mixing, where h, r, f are θ-Hölder.

(1) There are group elements (g1, g2) ∈ G × G, determined only by the cocycle
h, such that if statement (2) of Lemma 4.5 is valid for fixed β > 1/(− ln θ),
α′ > β|f |∞ and arbitrarily large b, then (g1, g2) ∈ D.

(2) The pair (g1, g2) varies continuously with h in the Hölder topology. Moreover,
(g1, g2) /∈ D for an open, dense and prevalent set of cocycles h ∈ F θ(X,G).

(3) If (g1, g2) /∈ D, then the suspension flow is rapidly mixing.

Proof. We describe first the elements g1, g2 and prove parts (2) and (3), assum-
ing (1). We then prove (1).

Suppose for simplicity that x ∈ X is a fixed point with symbol x = x0x0 · · · =
x∞0 . Let W1,W2 be words of the same length (q say) such that x0Wjx0 are admis-
sible sequences for j = 1, 2, and such that the three words W1,W2, x

q
0 are distinct.

Define Em = {x, σk(xm0 Wjx
∞
0 ), j = 1, 2, k ≥ 0} for m ≥ 0 and let E =

⋃
Em. By

construction, all points in E are isolated except for x. Moreover, Wjx
∞
0 lies in Em

for all m and is achieved precisely once for each m.
Set g1 = limm→∞ hm(x)−1hm(xm−q0 W1x

∞
0 ). To see that the limit exists, note

that

hm(x)−1hm(xm−q0 W1x
∞
0 ) = hq(x)−1hm−q(x)−1hm−q(x

m−q
0 W1x

∞
0 )hq(W1x

∞
0 ),

and since h is Hölder, the sequence hm(x)−1hm(xm0 W1x
∞
0 ) is Cauchy. Similarly,

define g2 = limm→∞ hm(x)−1hm(xm−q0 W2x
∞
0 ).

Note that g1 and g2 depend only on the underlying skew product σh : X ×G→
X × G, and in particular on the values of h at points in the set E defined above.
We have complete control over g1 and g2, by perturbing h at the points Wjx

∞
0
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say. Hence, by Lemma 5.3, (g1, g2) 6∈ D for a dense (and clearly prevalent) set of
h ∈ F θ(X,G). A standard argument using Hölder continuity shows that g1 and g2
depend continuously on h. Hence (g1, g2) 6∈ D for an open and dense, and prevalent,
set of h ∈ F θ(X,G). This proves (2).

Part (1) of the Proposition implies that either rapid mixing holds, or (g1, g2) ∈ D.
Indeed, suppose that Xr×G is not rapid mixing. Then it follows from Theorem 3.1
that there exist approximate eigenfunctions, hence condition (c) of Theorem 4.1
holds. It follows from Lemma 4.5 that statement (2) of Lemma 4.5 is valid, hence
(g1, g2) ∈ D. This proves (3).

We now proceed with the proof of (1). Given β > 1/(− ln θ), α′ > β|f |∞, choose
b arbitrarily large and v ∈ F θ(X,Cd) as in Lemma 4.5. Write n̄ = [β ln |b|]. Keeping
with the notation used in the proof of Lemma 4.6, denote by w(x) = v(x)/|v(x)|
the “phase” of v : X → Cd \ {0}.

It follows from an early stage of Lemma 4.6 (see relation (4.3), which can be
obtained for nonabelian G as well) that if σn̄y′ = σn̄y′′, then

|eibrn̄(y′)hn̄(y′)−1wb(y′)− eibrn̄(y′′)hn̄(y′′)−1wb(y′′)| ≤ 4/|b|α
′′
,

where α′ = 2α′′ + β|f |∞ and we have chosen to stress the dependence of w on b.
Taking y′ = x and y′′ = xn̄−q0 W1x

∞
0 ,

|hn̄(xn̄−q0 W1x
∞
0 )hn̄(x)−1wb(x)− eib[rn̄(xn̄−q

0 W1x
∞
0 )−rn̄(x)]wb(x

n̄−q
0 W1x

∞
0 )| ≤ 4/|b|α

′′
.

Now,

|wb(xn̄−q0 W1x
∞
0 )− wb(x)| ≤ |wb|θθn̄−q ≤ C̃6|b|θβ ln |b| = C̃6|b|1+β ln θ,

which converges to zero by the choice of β. Therefore

|hn̄(xn̄−q0 W1x
∞
0 )hn̄(x)−1wb(x)− eib[rn̄(xn̄−q

0 W1x
∞
0 )−rn̄(x)]wb(x)| → 0 (5.13)

as b → ∞. Passing to a subsequence of b’s, we may suppose that hn̄(x)−1wb(x)
converges to a fixed unit vector ξ. Then (5.13) implies that

hn̄(x)−1hn̄(x
n̄−q
0 W1x

∞
0 )ξ → C{ξ}

as b→∞, hence g1 preserves the space C{ξ}. Starting with W2 instead of W1, we
obtain that g2 preserves the subspace C{ξ} as well, and conclude that (g1, g2) ∈ D,
as claimed.

Appendix A. Laplace transform of the correlation function. In this ap-
pendix, we derive formula (3.1) for R̂ for Re s > 0. Suppose that φ = gv, ψ = gw :
Xr × G → Rd are equivariant bounded observations with

∫
Xr×G φdmr = 0. We

use the labeling y ∈ X ×G, (y, b) ∈ (X ×G)r = Xr ×G.

Proposition A.1. Let

R(t) =
∞∑
n=0

∫
Xr×G

φ(y, a)
(∫ r(σny)

0

ψT (σnhy, b)δ(t+ a− rn(y)− b)db
)
dmr.

where the sum converges absolutely and is bounded by |φ|∞|ψ|∞.
Then R(t) = ρ(t) for t ≥ 0, and R(t) = 0 for t < −|r|∞.

Proof. Consider the expression

E(y, a, t) =
∞∑
n=0

∫ r(σny)

0

ψ(σnhy, b)δ(t+ a− rn(y)− b)db,
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defined for y ∈ X ×G, a ∈ [0, r(y)], t ∈ R.
For fixed y, a, the n’th term in the sum is nonzero if and only t lies in the interval

[rn(y)−a, rn+1(y)−a] in which case the n’th term is given by ψ(σnhy, t+a−rn(y)).
Hence, when t ≥ 0 and t ∈ [rn(y) − a, rn+1(y) − a], the n’th term coincides

with ψ(Tt(y, a)). It follows that E(y, a, t) = ψ(Tt(y, a)), provided that t ≥ 0 and
t 6= rn(y) − a for some n. At the same time, if t < −|r|∞, then t + a < 0 for all
(y, a) ∈ Xr ×G so that E(y, a, t) = 0.

Now R(t) =
∫
Xr
φ(y, a)ET (y, a, t) dmr so it is immediate that R(t) = 0 for

t < −|r|∞. If t ≥ 0, then E(y, a, t) = ψ(Tt(y, a)) for almost all (y, a) so that
R(t) = ρ(t).

Since R is bounded, the Laplace transform R̂ is defined for all Re s > 0. Let
U : L2

G(X ×G,Rd) → L2
G(X ×G,Rd) be the isometry defined by Uφ = φ ◦ σh, and

let U∗ be the adjoint of U . We compute that

R̂(s) =
∫ ∞

0

e−tsR(t)dt

=
∞∑
n=0

∫
Xr×G

φ(y, a)
(∫ r(σny)

0

ψT (σnhy, b)e
−s(−a+rn(y)+b)db

)
dmr

=
1
r̄

∞∑
n=0

∫
X×G

e−srn φ̂−sU
nψ̂Ts dm =

1
r̄

∞∑
n=0

∫
X×G

(U∗)n(e−srn φ̂−s)ψ̂Ts dm,

where we use the notation f̂s(y) =
∫ r(y)
0

f(y, a)e−sada for f : Yr → Rm and y ∈ Y .
Now, we specialise to the context of suspensions of subshifts of finite type. Re-

call [9] that U∗ = gLf,hg
−1 and so (U∗)n(e−srn φ̂−s) = gLnf−sr,hv̂−s. Hence

R̂(s) =
1
r̄

∞∑
n=0

∫
G

g

∫
X

{Lnf−sr,hv̂−s}ŵTs dµ gT dν. (A.14)

Let τ(A) denote the spectral radius of A. It follows from [18] that τ(Lf−sr,h) ≤
τ(Lf−Re(s)r). On the other hand, it is evident that τ(Lf−ar) < τ(Lf ) = 1 for all
a > 0 (since r is strictly positive). Hence, for Re s > 0,

(I − Lf−sr,h)−1v̂−s =
∞∑
n=0

Lnf−sr,hv̂−s,

and therefore (A.14) becomes

R̂(s) =
1
r̄

∫
G

g

∫
X

{(I − Lf−sr,h)−1v̂−s}ŵTs dµ gT dν.

This proves the validity of formula (3.1) for Re s > 0.
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