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Abstract. Let f : X → X be the restriction to a hyperbolic basic set of a smooth
diffeomorphism. We find several criteria for transitivity of noncompact connected
Lie group extensions. As a consequence, we find transitive extensions for any finite-
dimensional connected Lie group extension. If, in addition, the group is perfect
and has an open set of elements that generate a compact subgroup, we find open
sets of stably transitive extensions. In particular, we find stably transitive SL(2, R)-
extensions. More generally, we find stably transitive Sp(2n, R)-extensions for all
n ≥ 1. For the Euclidean groups SE(n) with n ≥ 4 even, we obtain a new proof
of a result of Melbourne and Nicol stating that there is an open and dense set of
extensions that are transitive.

For groups of the form K × R
n where K is compact, a separation condition is

necessary for transitivity. Provided X is a hyperbolic attractor, we show that an
open and dense set of extensions satisfying the separation condition are transitive.
This generalizes a result of Niţică and Pollicott for R

n-extensions.

1 Introduction

This paper is part of a program to classify the obstructions to (stable) topo-
logical transitivity in various classes of partially hyperbolic transformations. We
concentrate on noncompact group-extensions of hyperbolic systems. Consider a
transformation f : X → X , a Lie group G, and a mapping β : X → G called a
cocycle. These determine a skew product, or G-extension,

fβ : X × G → X × G, fβ(x, h) = (fx, β(x)h).

It is assumed throughout that X is a hyperbolic basic set and that G is a finite-
dimensional connected Lie group. The G-extension fβ is called stably transitive if β
lies in the interior (usually in the Hölder topology) of the subset of extensions that
are topologically transitive. (Recall that a transformation g : Y → Y is transitive
if it has a dense orbit.) The question we intend to address is whether noncom-
pact group extensions of a hyperbolic basic set are typically stably topologically
transitive.

If β takes values in a proper closed sub-semigroup S of G then obviously
fβ is not transitive. An example is the group G = SL(n, R) with sub-semigroup
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S consisting of matrices with non-negative entries. Since Int S �= ∅, we can con-
struct open sets of nontransitive SL(n, R)-extensions. Our conjecture is that this
situation is the only essential obstruction to transitivity.

Conjecture 1.1 Assume that X is a hyperbolic basic set for f : X → X and G
a finite-dimensional connected Lie group. Among the C0-small Hölder cocycles
β : X → G that are not cohomologous to a cocycle with values in a maximal sub-
semigroup of G with non-empty interior, there is a Hölder open and dense set for
which the extension fβ is transitive.

Recall the definition of cohomology:

Definition 1.2 Let G be a topological group. If β1, β2 : X → G are continuous
functions, and f : X → X is a transformation, then β1 and β2 are called co-
homologous (over f) if there exists a continuous function u : X → G such that
β1 = (u ◦ f)β2u

−1.

In order to simplify the language, we let e denote both the identity element
e ∈ G and the constant cocycle e : X → G that takes the value e everywhere, and
we introduce:

Definition 1.3 Let r ≥ 0. We say that a cocycle β : X → G is Cr-small if it is
Cr-close to the identity cocycle e : X → G.

In some cases (for example, if G is nilpotent or G = K � R
n is a semidirect

product of a compact group K and R
n), the Conjecture might hold even for

cocycles that are not C0-small.
This paper attempts to give certain evidence in support of Conjecture 1.1.

Many of our results are “Hölder-open and Cr-dense”, where Hölder-openness
means “Cs-open for any s ∈ (0, 1), s < r”. Previously studied situations where
the Conjecture is known to hold are the following:

• G compact: Note that in this case, semigroups coincide with subgroups and
there are no proper subgroups with nonempty interior. It was proved by Brin [4]
that if the fiber is a compact connected Lie group, then the transitive extensions
of a transitive Anosov diffeomorphism contain a set that is open and dense in the
C2-topology. As observed in [17], Brin’s result also holds in the Hölder topology. In
fact, for any r > 0 the Cr cocycles that are transitive contain a Hölder-open and
Cr-dense set, and this result generalizes to extensions of a hyperbolic attractor.

The latter result does not hold for extensions of general hyperbolic basic sets
when r < 1 (in particular, the result is false if X is a subshift of finite type and
G is a torus). However for compact group extensions of general hyperbolic basic
sets, Field et al. [6] prove that the transitive extensions contain a set that is (i)
Hölder open and dense (proving the Conjecture), and (ii) C2-open, Cr-dense for
all r ≥ 2. (See also [19, 8, 7].)

• G = SE(n), n even: For all n ≥ 2, there are again no sub-semigroups with non-
empty interior (Corollary 6.9). For n ≥ 4 even, Melbourne and Nicol [11] prove
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that the set of stably transitive extensions of a hyperbolic basic set is Hölder-open
and Cr-dense for all r > 0. This is obtained as an application of Niţică [13], by
verifying ε-accessibility and density of recurrent points.

The argument for ε-accessibility in [11] breaks down for n = 2, but this can
be recovered by assuming that the hyperbolic basic set is an attractor. So, for all
r > 0, SE(2)-extensions of hyperbolic attractors are transitive for a Hölder-open
and Cr-dense set of cocycles. (See Proposition 6.1.)

Conjecture 1.1 remains open for SE(n)-extensions with n ≥ 3 odd, though
some partial results are obtained in this paper.

• G = R
n: Here, the maximal semigroups with non-empty interior are the half-

spaces whose bounding hyperplane contains the origin. Hence, stable transitivity
is certainly not a generic property of R

n-extensions. However, there are no further
obstructions. Niţică and Pollicott [15] prove that an R

n-extension fβ over an in-
franil Anosov diffeomorphism is transitive (and hence stably transitive) if and only
if β is not cohomologous to a cocycle with values in such a half-space. Moreover,
the transitive Hölder R

n-extensions are actually C0-stably transitive.
For general hyperbolic basic sets, transitive R

n-extensions need not be stably
transitive. However, let S denote the set of cocycles that are not cohomologous
to a cocycle with values in a half-space. For cocycles in S, Field et al. [6] prove
a result identical to that stated above for compact group extensions. Again this
proves the Conjecture for R

n-extensions.
Identical statements hold for general Abelian finite-dimensional Lie groups

G = R
n × T d, where T d is a d-dimensional torus.

Write fk
β (x, g) = (fkx, β(k, x)g). For k ≥ 0 this gives

β(k, x) = β(fk−1x)β(fk−2x) · · ·β(fx)β(x).

The key notion in this paper is the following:

Definition 1.4 Let fβ : X × G → X × G be a skew-extension. Given x ∈ X , let

Lβ(x) = {g ∈ G| there exist xk ∈ X and nk > 0
such that xk → x and fnk

β (xk, e) → (x, g)}.
That is, Lβ(x) consists of the possible limits limk→∞ β(nk, xk), subject to

xk → x and fnk(xk) → x. Note that we do not require that nk → ∞ or that
xk �= x. Clearly Lβ(x) is a closed subset of G.

In Section 3, we study the properties of Lβ(x) when f is hyperbolic. In
particular, Lβ(x) is a semigroup of G. (See Lemma 3.1.) Under a center bunching
condition on β , fβ is transitive provided that Lβ(x) = G for some x ∈ X . (See
Theorem 3.3.) As a consequence we obtain new results about the existence of
transitive and stably transitive noncompact group extensions. We note that the
bunching condition is automatically satisfied for nilpotent groups and semidirect
products K �R

n where K is compact, as well as for sufficiently C0-small cocycles.
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1.1 General finite-dimensional connected Lie groups

For arbitrary finite-dimensional connected Lie groups, there always exist transitive
extensions.

Theorem 1.5 Let G be a finite-dimensional connected Lie group, and X a hyperbolic
basic set for f : X → X. Then for any r > 0 there is a Cr cocycle β : X → G
such that fβ is transitive. The cocycle β can be chosen to be arbitrarily Cr-small.

1.2 Groups with compact elements

For a restricted class of groups we can exhibit stably transitive skew-products.
Introduce the following property:

Definition 1.6 Call an element g ∈ G compact if it generates a compact subgroup.
Let C ⊂ G denote the set of compact elements.

Theorem 1.7 Let G be a finite-dimensional connected Lie group and let X be a
hyperbolic basic set for f : X → X. Let r > 0.

(a) If G is perfect and Int C �= ∅, then there is a nonempty Hölder-open set of
Cr cocycles β : X → G for which fβ is transitive. This set contains cocycles
that are arbitrarily Cr-small.

(b) If G is a semidirect product of a compact connected Lie group and R
n, G is

perfect, and Int C is dense in G, then there is a Hölder-open and Cr-dense
set of cocycles β : X → G for which fβ is transitive.

Part (a) of this theorem applies immediately to the symplectic group
Sp(2n, R) (see Corollary 4.5). Part (b) applies to the Euclidean group SE(n),
n ≥ 4 even (see Corollary 4.7) and so we recover by a different technique the
result of [11].

1.3 The groups G = K × R
n, K compact

Let K be a compact connected Lie group and form the direct product K ×R
n. As

was the case for R
n, there are maximal semigroups with nonempty interior of the

form K ×{half-space}. We show that these are the only obstructions when X is a
hyperbolic attractor.

Denote by S the set of Cr cocycles β : X → K × R
n for which the R

n-
component of β is not cohomologous to a cocycle with values in a half-space.

Theorem 1.8 Suppose that X is a hyperbolic attractor and G is of the form K×R
n

where K is a compact connected Lie group. Let r > 0. Then there is a Hölder-open
and Cr-dense subset of cocycles in S for which fβ is transitive.
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1.4 The groups SE(n)

We now consider Euclidean group extensions, so G = SE(n) = SO(n)�R
n, n ≥ 2.

(When n = 1, we have an R-extension dealt with above.)
The simplest situation is n ≥ 4 even. Melbourne and Nicol [11] proved that

there is an open-dense set of transitive SE(n)-extensions for such n and, as men-
tioned above, we recover their result as a consequence of Theorem 1.7.

The case n = 2 was mentioned above (see Proposition 6.1). However, the
results in [11] have nothing to say about the case n ≥ 3 odd. We can prove a result
about stable transitivity in a special case:

Theorem 1.9 Let σ : Σ → Σ be a transitive subshift of finite type. Let n ≥ 3.
Then the class of locally constant cocycles β : Σ → SE(n) contains a C0-open and
Hölder dense subset for which σβ is transitive.

1.5 Semigroup problem

For many groups (see [22]), it is not hard to show that there is a large open
set U ⊂ Gp (p large enough) such that if F ∈ U then the family F generates
G as a group (that is, the group generated by F is dense in G). To obtain the
condition Lβ(x) = G, we would like to prove that for a typical family F ∈ Gp

that generates G as a group, if F is not contained in a maximal semigroup with
non-empty interior, then F generates G as a semigroup as well. We refer to this
as the Semigroup Problem. This is true for G = R

n [15] and more generally for
groups of the form K × R

n where K is compact, see Theorem 5.10. The result is
also true for G = SE(n), see Theorem 6.8.

1.6 Structure of the paper

In §2 we introduce certain invariance properties for a metric on a group, and prove
a few inequalities related to them and Hölder cocycles. In §3 we prove that the
invariant Lβ(x) is a semigroup and obtain a criterion for transitivity in terms of
Lβ(x). In §§4, 5 and 6 we prove the transitivity results for general Lie groups,
K × R

n, and SE(n). In §7 we list some open questions.

2 Inequalities

2.1 Hyperbolicity

Let M be a smooth manifold endowed with a Riemannian metric. Let f : M → M
be a smooth diffeomorphism and X ⊂ M a compact and f -invariant subset of M .

We say that f : X → X is hyperbolic if there exists a continuous Tf -invariant
splitting Es ⊕ Eu of the tangent bundle TXM and constants C > 0, 0 < λ < 1,
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such that for all n ≥ 0 and x ∈ X we have:

‖(Dfn)xv‖ ≤ Cλn‖v‖, v ∈ Es

‖(Df−n)xv‖ ≤ Cλn‖v‖, v ∈ Eu.
(2.1)

We say that X is maximal and isolated if there exists an open neighborhood
U of X such that every compact f -invariant set of U is contained in X .

The set X is a basic set for f : M → M if:

1. f is hyperbolic on X ;

2. X is maximal and isolated;

3. f : X → X is transitive.

We say that a basic set X is a hyperbolic attractor if there is a forward
invariant open set U ⊂ M such that X = ∩n≥0f

n(U).

2.2 Center bunching

Let G be a connected Lie group with Lie algebra LG. Let Ad denote the adjoint
action of G on LG, and choose a norm ‖ ‖ on LG. There is a metric d on G with
the following properties (Pollicott and Walkden [20, p. 288]):

1. d(γ1δ, γ2δ) = d(γ1, γ2);

2. d(δγ1, δγ2) ≤ ‖Ad(δ)‖d(γ1, γ2);

for any γ1, γ2, δ ∈ G.
The estimates we need are related to the fact that the skew-extension can

be viewed as a partially hyperbolic transformation (see, e.g., [16, 17, 20]). We are
using the terminology of [20].

Definition 2.1 Given a cocycle β : X → G, define µ ≥ 1 to be

µ = max
{

lim
n→∞ sup

x∈X
‖Ad(β(n, x))‖1/n, lim

n→∞ sup
x∈X

‖Ad(β(n, x))−1‖1/n
}

.

For α ∈ (0, 1), we say that a Cα cocycle β is center bunched if µλα < 1.

Remark Although center bunching is sufficient for some of the constructions in
this paper, our main results require a strong center bunching condition of the form
µ8λα < 1.

If G is compact or nilpotent, then µ = 1 so that Hölder cocycles are au-
tomatically (strongly) center bunched. The same is true for semidirect products
G = K � R

n where K is compact.
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The α-Hölder (semi)norm of β : X → G is defined by

‖β‖α = sup
x �=y

d(β(x), β(y))
distX(x, y)α

.

The main result of this section is the following:

Lemma 2.2 Let (G, d) be a connected Lie group, X a hyperbolic basic set for f :
X → X, and β : X → G an α-Hölder cocycle. Assume the center bunching
condition µλα < 1. Then there is a constant C = C(f, β) > 0 with the following
property.

Given ε > 0 sufficiently small and any n ≥ 1, assume that there are two
trajectories xk = fkx0, yk = fky0, such that d(xk, yk) < ε for 0 ≤ k ≤ n−1. Then

d(β(n, x0), β(n, y0)) ≤ C
(‖Ad(β(n, x0))‖ + 1

)
εα. (2.2)

Proof. From the local product structure it follows (for ε sufficiently small) that
the intersection W s

loc(xk) ∩ Wu
loc(yk) consists of a single point for 0 ≤ k ≤ n − 1.

Denote zk = W s
loc(xk) ∩ Wu

loc(yk) and note that zk = fkz0. There is a constant
C0, independent of n, x0 and y0, such that

d(xk, zk) ≤ C0λ
kd(x0, z0), d(yk, zk) ≤ C0λ

n−kd(yn−1, zn−1),
d(x0, z0) ≤ C0d(x0, y0), d(yn−1, zn−1) ≤ C0d(xn−1, yn−1).

By center bunching, there exists δ > 0 such that (µ + δ)λα < 1. By definition of
µ, there exists a constant C1 > 0 such that ‖Ad(β(k, x))±1‖ ≤ C1(µ + δ)k for all
x ∈ X and k ≥ 1.

Denote:

ωk = β(xk), Ω = β(n, x0) = ωn−1ωn−2 . . . ω0,

γk = β(yk), Γ = β(n, y0) = γn−1γn−2 . . . γ0,

φk = β(zk), Φ = β(n, z) = φn−1φn−2 . . . φ0.

We claim that there are constants C′, C′′ > 0 depending only on f and β
such that

d(Ω, Φ) ≤ C′‖Ad(Ω)‖‖β‖αd(x0, z0)α (2.3)
d(Φ, Γ) ≤ C′′‖β‖αd(yn−1, zn−1)α. (2.4)

It then follows from the triangle inequality that d(Ω, Γ) ≤ C(‖Ad(Ω)‖ + 1)εα as
required with C = max{C′, C′′}Cα

0 ‖β‖α.
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Proof of (2.3).

d(Ω, Φ) = d(ωn−1ωn−2 . . . ω0, φn−1φn−2 . . . φ0)

≤
n−1∑
k=0

d(ωn−1 . . . ωk+1ωkφk−1 . . . φ0 , ωn−1 . . . ωk+1φkφk−1 . . . φ0)

≤
n−1∑
k=0

‖Ad(ωn−1 . . . ωk+1)‖d(ωk, φk) =
n−1∑
k=0

‖Ad(Ωω−1
0 . . . ω−1

k )‖d(ωk, φk)

≤ ‖Ad(Ω)‖
n−1∑
k=0

‖Ad(β(k + 1, x0))−1‖d(ωk, φk).

Moreover, ‖Ad(β(k + 1, x0))−1‖ ≤ C1(µ + δ)k+1 and

d(ωk, φk) ≤ ‖β‖αd(xk, zk)α ≤ ‖β‖α{C0λ
kd(x0, y0)}α,

and so

d(Ω, Φ) ≤ ‖Ad(Ω)‖‖β‖αλ−αCα
0 C1d(x0, y0)α

n−1∑
k=0

[(µ + δ)λα]k+1

≤ C′‖Ad(Ω)‖‖β‖αd(x0, y0)α,

where C′ = Cα
0 λ−αC1(1 − (µ + δ)λα)−1.

Proof of (2.4). Similarly,

d(Γ, Φ) = d(γn−1γn−2 . . . γ0, φn−1φn−2 . . . φ0)

≤
n∑

k=1

d(γn−1 . . . γn−k+1γn−kφn−k−1 . . . φ0 , γn−1 . . . γn−k+1φn−kφn−k−1 . . . φ0)

≤
n∑

k=1

‖Ad(γn−1 . . . γn−k+1)‖d(γn−k, φn−k)

≤
n∑

k=1

‖Ad(β(k − 1, yn−k+1))‖‖β‖α{C0λ
kd(yn−1, zn−1)}α

≤ C′′‖β‖αd(yn−1, zn−1)α

where C′′ = Cα
0 λαC1(1 − (µ + δ)λα)−1. �

3 Criteria for transitivity of skew-products

We introduced the closed subset Lβ(x) ⊂ G in Definition 1.4. We now show that
Lβ(x) is a semigroup.
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Lemma 3.1 Let X be a hyperbolic basic set for f : X → X, and β : X → G an
α-Hölder cocycle, where G is a finite-dimensional connected Lie group. Assume
the center bunching condition µλα < 1. Then, for any x ∈ X, the set Lβ(x) is a
closed semigroup.

Proof. Let h1, h2 ∈ Lβ(x); we show that h2h1 ∈ Lβ(x). It follows from the defini-
tion of Lβ(x) that for any ε > 0 there are positive integers ni and points yi ∈ X ,
i = 1, 2 such that:

d(yi, x) < ε, d(fni(yi), x) < ε, d(β(ni, yi), hi) < ε. (3.1)

We can arrange also that

‖Ad(β(ni, yi)‖ ≤ ‖Ad(hi)‖ + 1, (3.2)

for i = 1, 2.
By standard shadowing techniques (see [12, page 74]), there is a K > 0

depending only on f such that one can (Kε)-shadow the pseudo-orbit {y1, fy1, . . . ,
fn1y1 ≈ y2, fy2, . . . , f

n2y2} by an orbit of length n1 + n2 of a point z ∈ X .
Since

d(γ2γ1, ω2ω1) ≤ ‖Ad(ω2)‖d(γ1, ω1) + d(γ2, ω2),

it follows that

d(β(n1 + n2, z), h2h1) = d(β(n2, f
n1z)β(n1, z), h2h1)

≤ ‖Ad(h2)‖d(β(n1, z), h1) + d(β(n2, f
n1z), h2). (3.3)

Using Lemma 2.2 together with inequalities (3.1) and (3.2), we obtain

d(β(n1, z), h1) ≤ d(β(n1, z), β(n1, y1)) + d(β(n1, y1), h1)

≤ C
(‖Ad(β(n1, y1))‖ + 1

)
(Kε)α + ε

≤ C
(‖Ad(h1)‖ + 2

)
(Kε)α + ε.

A similar estimate holds for d(β(n2, f
n1z), h2). Substituting these estimates into

(3.3), gives
d(β(n1 + n2, z), h2h1) ≤ C′(h1, h2)εα,

where C′(h1, h2) is a constant independent of the lengths of the orbits. Taking
ε → 0+, we conclude that h2h1 ∈ Lβ(x). �

Remark Finite-dimensionality of G is used only to guarantee that Ad(h) : LG →
LG is a bounded operator for h ∈ G. For G an infinite-dimensional connected Lie
group, it remains true that if hi ∈ Lβ(x) with ‖Ad(hi)‖ < ∞ for i = 1, 2, then
h2h1 ∈ Lβ(x).

The next result follows from the symbolic representation of basic sets for
hyperbolic diffeomorphism due to [3].
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Lemma 3.2 Let X be a hyperbolic basic set for f : X → X. Then there is a constant
K > 1, such that for any ε > 0 and any x, y ∈ X there exists a trajectory of f
joining B(x, ε) to B(y, ε) in at most 2 ln ε/ ln λ + K steps.

Proof. There exists an ω-Hölder and onto map π : ΣA → X where ΣA is a subshift
of finite type with metric dθ, 0 < θ < 1 and ω = ln λ/ ln θ (as in for example [18,
Theorem III.3, p. 228]). There exists a constant C0 such that the π-image of
any cylinder C−m,m has diameter less than C0(θm)ω = C0λ

m. In particular, if
C0λ

m < ε, then the cylinder C−m,m determined by x has the π-image in B(x, ε).
For this, it suffices to take

m =
[ ln ε

ln λ
− ln C0

ln λ
+ 1

]
. (3.4)

From the transitivity of f it follows that there exists a constant K0 such
that any two symbols in ΣA can be joined by a block of length less than K0.
Consider now the blocks B1 and B2 of length 2m+1 corresponding to the cylinders
determined by x and respectively y, and a block B3 of length less than K0 joining
the last symbol of B1 with the first symbol of B2. Then the block B1B3B2 gives a
trajectory in ΣA of length less than 2m + K0 between an element in the cylinder
determined by x and an element in the cylinder determined by y. Applying π
we obtain a trajectory in X of length less than 2m + K0. If m is chosen as in
formula (3.4), then the lemma follows with K = K0 − 2 lnC0/ lnλ + 2. �

We can now state and prove our criteria for transitivity of noncompact ex-
tensions.

Theorem 3.3 Let G be a connected Lie group. Assume that X is a hyperbolic basic
set for f : X → X, and β : X → G is a Hölder cocycle. Assume the strong center
bunching condition µ8λα < 1. If there exists x0 ∈ X such that Lβ(x0) = G, then
the skew-product fβ is transitive.

Proof. We need to show that for any open sets U, V ⊂ X × G there is a positive
integer N such that fN

β (U)∩V �= ∅. Let (y, g1) ∈ U and (z, g2) ∈ V . Let h = g2g
−1
1 .

Let ε > 0 be fixed, smaller than the hyperbolicity constant λ, and such that
B((y, g1), ε) ⊂ U and B((z, g2), ε) ⊂ V . Let ω1 be an orbit of f from B(y, ε) to
B(x0, ε), and ω2 an orbit of f from B(x0, ε) to B(z, ε), chosen as in Lemma 3.2.
The orbits ω1, ω2 have length at most n where n ≤ 2 ln ε/ ln λ + K.

Since Lβ(x0) = G, there exists an orbit ω of f starting and ending in
B(x0, ε) such that d(β(ω), β(ω2)−1hβ(ω1)−1) < ε. Altogether, ω1ωω2 gives a
pseudo-orbit for fβ starting in U and ending in V . By standard shadowing tech-
niques (see [12, page 74]), one can find an orbit ω̃1ω̃ω̃2 of f which K ′ε-shadows
the pseudo-orbit ω1ωω2. The constant K ′ > 0 depends only on f . We obtain an
orbit (ω̃1ω̃ω̃2, β(ω̃1ω̃ω̃2)) for fβ starting in U , and we must show that this orbit
ends in V also.



Vol. 6, 2005 Stable Transitivity of Noncompact Extensions of Hyperbolic Systems 735

Choose δ so that (µ+ δ)λα/8 < 1. There exists C1 such that ‖Ad(β(k, x))±1‖
≤ C1(µ + δ)k for all k ≥ 1 and x ∈ X . Since ω1, ω2 have length at most n,

‖Ad(β(ωi))±1‖ ≤ C1(µ + δ)n, i = 1, 2. (3.5)

For ε sufficiently small, we can ensure that

‖Ad(β(ω))‖ ≤ 2C2
1‖Ad(h)‖(µ + δ)2n, (3.6)

(since d(β(ω)β(ω1)h−1β(ω2), e) < ε,

so by continuity ‖Ad(β(ω)β(ω1)h−1β(ω2))‖ < 2).

By the triangle inequality, Lemma 2.2 and (3.5), (3.6),

d(β(ω2)β(ω)β(ω1), β(ω̃2)β(ω̃)β(ω̃1))
≤ d(β(ω2), β(ω̃2)) + ‖Ad(β(ω2))‖d(β(ω), β(ω̃))

+ ‖Ad(β(ω2)β(ω))‖d(β(ω1), β(ω̃1))

≤ C
{(‖Ad(β(ω2))‖ + 1

)
+ ‖Ad(β(ω2))‖

(‖Ad(β(ω))‖ + 1
)

+ ‖Ad(β(ω2))‖‖Ad(β(ω))‖(‖Ad(β(ω1))‖ + 1
)}

(K ′ε)α

≤ C̃((µ + δ)4n + 1)εα.

Recall that n ≤ 2 ln ε/ lnλ + K, so that

(µ + δ)4nεα ≤ Ĉεα+8 ln(µ+δ)/ ln λ

which has a positive exponent by the choice of δ. Hence C̃((µ+δ)4n+1)εα converges
to 0 as ε approaches 0. �

4 Transitive extensions for general Lie groups

In this section we describe several applications of our transitivity criteria.
Throughout this section we assume that X is a hyperbolic basic set for f :

X → X . Without loss of generality we can also assume that f has fixed points (if
not, take an iterate of it). Let G be a finite-dimensional connected Lie group. By
β : X → G we denote a center bunched α-Hölder cocycle.

The proofs depend on a way to generate elements of Lβ(x).

Lemma 4.1 Let x ∈ X be a fixed point for the transformation f and y a homoclinic
point to x. If there is a subsequence nk → ∞ such that β(nk, x) → e, then ωx(y) ∈
Lβ(x), where ωx(y) is the holonomy of the homoclinic loop determined by y.

Let us describe the meaning of ωx(y). Consider the homoclinic path deter-
mined by the orbit of y ∈ W s(x) ∩ Wu(x) (covered along Wu(x) from x to y and
then along W s(x) from y to x). Then, the lift to the unstable/stable foliations of
fβ, with initial point (x, e), of this homoclinic path ends at (x, ωx(y)).
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Note that these holonomy values can be easily modified by changing β in an
open set which contains only finitely many iterates of y. Moreover, the holonomy
varies continuously with the cocycle β: if β̃ is Cα-close to β, then ω̃x(y) is close to
ωx(y). See more details in the proof.

Proof of Lemma 4.1: As in [17, Theorem A.3] and [16, Theorems 2.4 and A.1],
under the standing hypothesis of this section, the stable leaf of fβ through (x, e)
is the graph of the function

γs
x : W s(x) → G, γs

x(t) = lim
n→∞β(n, t)−1β(n, x). (4.1)

This function is α-Hölder, and varies continuously with the cocycle β in the follow-
ing sense: if βk → β in C0 and βk stay Cα-bounded, then, on W s

loc(x), γs
k,x → γs

x

in C0.
Applying the above results to f−1, we obtain that the unstable manifold is

the graph of

γu
x : Wu(x) → G, γu

x (t) = lim
n→−∞β(n, t)−1β(n, x),

and the same continuous dependence holds.
Therefore, the holonomy around the homoclinic loop determined by y ∈

W s(x) ∩ Wu(x) is

ωx(y) = lim
n→∞

(
β(n, y)−1β(n, x)

)−1
β(−n, y)−1β(−n, x)

= lim
n→∞β(n, x)−1β(2n, f−ny)β(−n, x).

Hence, if β(nk, x) → e, then ωx(y) ∈ Lβ(x) because

lim
k→∞

f2nk

β (f−nky, e) = lim
k→∞

(fnky, β(2nk, f−nky)) = (x, ωx(y)).

�

Proposition 4.2 Let G be a connected finite-dimensional Lie group. There exists
k ≥ 1 (k = 2 dimG suffices) such that for any ε > 0, there exist g1, . . . , gk with
d(gi, e) < ε such that the closed sub-semigroup generated by g1, . . . , gk is G.

Proof. Choose ξ1 . . . , ξn that generate LG. For each i, choose ai, bi > 0 with
ai/bi �∈ Q and set gi = exp(aiξi), hi = exp(−biξi). Shrink ai and bi if necessary so
that d(gi, e) < ε and d(hi, e) < ε.

The closed sub-semigroup Si generated by gi and hi is in fact a Lie group
and is the closure of the one-parameter subgroup generated by ξi. Hence, if S
is the closed sub-semigroup generated by g1, . . . , gn, h1, . . . , hn, then S is a Lie
group with Lie algebra containing ξ1, . . . , ξn. Hence LS = LG and so S = G as
required. �
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Proof of Theorem 1.5: Let k be given by Proposition 4.2. Pick a fixed point x of
f (or of an iterate of f), and k homoclinic points to x, say y1, . . . , yk, such that
they have mutually disjoint orbits.

By Proposition 4.2, we may choose a set of group generators {g1, . . . , gk} of
G that are as close to the identity as desired.

Let β : X → G be the trivial cocycle. One can obtain ωx(yi) = gi by setting
β(yi) = gi, while keeping β ≡ e on the remaining points in the trajectories of yi

(also keeping β(x) = e).
Since we only have to perturb β at finitely many points, the resulting cocycle

is arbitrarily Cr-close to the identity. By keeping the cocycle small, we ensure also
that Theorem 3.3 and formula (4.1) hold.

Since β(x) = e, Lemma 4.1 implies that all these holonomies are in Lβ(x),
hence Lβ(x) = G. The conclusion follows from Theorem 3.3. �

Proposition 4.3 Let G be a connected finite-dimensional Lie group. Let C denote
the set of compact elements in G and suppose that Int C �= ∅. Then e ∈ Int C.

Proof. First note that if g ∈ G and n ≥ 1, then g ∈ C if and only if gn ∈ C. Hence
nth roots of elements in Int C lie in Int C. Thus it suffices to verify that there are
elements in Int C of infinite order. (Such elements generate tori and hence have
nth roots arbitrarily close to e.)

We use the following structure theorem for finite-dimensional connected Lie
groups ([5]): There is a compact connected Lie group K ⊂ G that is maximal
in the sense that every compact element is conjugate to an element of K. The
condition Int C �= ∅ implies that dimK ≥ 1. In particular, there is a dense set of
elements in K of infinite order. Hence, if g ∈ C, then g lies in a copy of K and can
be perturbed to have infinite order. �

The following lemma appears in [10, Lemma 3], for pairs of generators.

Lemma 4.4 (Kuranishi) Let G be a connected perfect Lie group. If {f1, f2, . . . , fk}
⊂ G is a finite set that topologically generates G as a group, then there is a neigh-
borhood V of e such that for any f ′

i ∈ V fi, the set {f ′
1, f

′
2, . . . , f

′
k} topologically

generates G as well.

Proof of Theorem 1.7: First we prove statement (a). As in the proof of The-
orem 1.5, we start with the trivial cocycle β and make Cr-small perturbations
at finitely many points. Again, we pick a fixed point x and k homoclinic points
y1, . . . , yk. The main difference is that we begin by perturbing β(x) to lie in Int C
(this is possible by Proposition 4.3). Since β(x) is a compact element, we are still
in a position to apply Lemma 4.1.

Choose k near identity elements g1, . . . , gk as in Proposition 4.2 but with
the additional property that gi ∈ Int C. (The proof of Proposition 4.2 is easily
modified using the fact that dim C = dimG.) After the initial perturbation at x,
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the holonomies ωx(yi) are arbitrarily close to the identity, so we can make Cr-
small perturbations at yi so that ωx(yi) = gi. In this way, we obtain a transitive
extension just as in the proof of Theorem 1.5.

It remains to verify that transitivity persists under Hölder perturbations of β.
The properties β(x) ∈ Int C and gi = ωx(yi) ∈ Int C certainly persist, so the only
question is whether the gi continue to topologically generate G as a semigroup.
Since gi are compact elements, it is equivalent to show that they generate G as a
group. But since G is perfect, it follows from Lemma 4.4 that generating G as a
group is a stable property.

To prove statement (b), note that strong center bunching is now automatic.
If moreover the set of compact elements in G is open and dense, then we can start
with any cocycle, and the proof proceeds as above. �

Corollary 4.5 Let X be a hyperbolic basic set for f : X → X . Then any Cr-
neighborhood of the identity cocycle e : X → Sp(2n, R) contains a Hölder-open set
of cocycles β for which fβ is transitive.

Proof. Recall that Sp(2n, R) is the group of all matrices M ∈ GL(2n, R) satisfying

MT JM = J where J =
(

0 In

−In 0

)
. This is a semisimple group and hence is

perfect. It is well known that IntC consists of those M for which all eigenvalues
are simple, lie on the unit circle, and are not equal to ±1 (e.g., [1, Example 3.5]).
Now apply Theorem 1.7. �

Lemma 4.6 The group SE(n), n ≥ 3, is perfect.

Proof. Recall that SE(n) = SO(n)�R
n. Since SO(n) is perfect for n ≥ 3, SO(n) ⊂

[SE(n), SE(n)].
Let (k, v), (k, v′) ∈ SE(n). Then:

(k, v)(k, v′)(k, v)−1(k, v′)−1 = (e, (1 − k)(v − v′)).

For any v0 ∈ R
n we can choose v, v′ ∈ R

n and k ∈ SO(n) such that (1−k)(v−v′) =
v0, thus R

n ⊂ [SE(n), SE(n)]. �
The statement in the previous lemma is not true for SE(2).

Corollary 4.7 Let X be a hyperbolic basic set for f : X → X . If n ≥ 4 even, then
in the set of Cr SE(n)-extensions of f there is a Hölder-open and Cr-dense subset
of stably transitive transformations.

Proof. The interior of the set C of compact elements is dense in SE(n) for n even.
By Lemma 4.6, SE(n) is perfect for n ≥ 3. Hence the result is a corollary of
Theorem 1.7. �

Remark The argument for SE(n), n ≥ 4 even, generalizes as follows. Suppose
that Γ ⊂ GL(n) is perfect, that Int C �= ∅, and that there is an open subset of Int C
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consisting of matrices with no eigenvalue equal to 1. Form the semidirect product
G = Γ�R

n where the automorphism is given by restriction of the action of GL(n)
on R

n. Then G is perfect and Int C �= ∅ for G. Hence Theorem 1.7 applies to G.
In particular, there exist stably transitive Sp(2n, R)�R

2n-extensions for all n ≥ 1.

5 K × R
n-extensions

The main aim in this section is to prove Theorem 1.8 concerning K×R
n-extensions.

We start by reviewing techniques of Brin [4] and Niţică [13]. For the moment,
G is any semidirect product K � R

n where K is a compact connected Lie group.

Definition 5.1 Let X be a metric space, and f : X → X a continuous map. A point
x ∈ X is called nonwandering if for any neighborhood U of x there is a positive
integer n such that fn(U) intersects U .

A proof of the following lemma follows from Appendix A in [17].

Lemma 5.2 Let X be a hyperbolic basic set for f : X → X, and β : X → G a
Hölder cocycle. Then there exist a pair of fβ-invariant Hölder foliations of X ×G,
called stable, respectively unstable.

Definition 5.3 Let X be a hyperbolic basic set for f : X → X , and β : X → G a
Hölder cocycle. Denote by Ws(x) and Wu(x) the leaves of the stable, respectively
unstable, foliations passing through x ∈ X × G. The pair of stable and unstable
foliations is called ε-accessible for any ε > 0 if for any pair of points x, y ∈ X ×G
and any ε > 0 there is a sequence of points x0 = x, x1, . . . , xn ∈ X × G such that
xi ∈ W s(xi−1) or xi ∈ Wu(xi−1), and d(xn, y) < ε.

The following lemma is proved in [13, Theorem 2.2].

Lemma 5.4 Let X be a hyperbolic basic set for f : X → X, and β : X → G a
Hölder cocycle. If the skew-product fβ has a dense set of nonwandering points and
the pair of stable and unstable foliations is ε-accessible for any ε > 0, then fβ is
transitive.

From [4] it is easy to derive the following lemma.

Lemma 5.5 Let X be a hyperbolic attractor for f : X → X. Then, the set of Cr

cocycles β : X → G for which the stable and unstable foliations of fβ are accessible
contains a Hölder-open and Cr-dense set.

Remark We conjecture that the previous lemma holds under the weaker assump-
tion that X is a hyperbolic basic set for f : X → X . We will see in Corollary 6.4
that this is indeed the case if the fiber is SE(n), n ≥ 3.

In the remainder of this section, we prove Theorem 1.8. Let π2 be the canon-
ical projection from K × R

n onto R
n. For β : X → K × R

n denote β2 = π2 ◦ β.
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5.1 An obstruction to transitivity

We first describe a necessary condition for transitivity that follows from the Livšic
Positive Theorem of Bousch [2, §4].

Definition 5.6 ([15]) For β2 : X → R
n, let

Hβ2 = {β2(k, x) | x ∈ X is a point with prime period k} ⊂ R
n.

Lemma 5.7 Let X be a hyperbolic basic set for f : X → X, and β : X → K × R
n

a Hölder cocycle. Then β is cohomologous to a cocycle whose R
n-component takes

values in a half-space if and only if Hβ2 is contained in the half-space,

Proof. One direction is clear. Conversely, it follows from [15, Lemma 2(2)] that β2

is cohomologous via a function u : X → R
n to a cocycle γ : X → R

n taking values
in the half-space. Define γ̂ = uβ(u ◦ T )−1. Then γ̂ is cohomologous to β and the
R

n-component π2γ̂ = γ takes values in the half-space. �
Clearly, fβ cannot be transitive in the situation described in Lemma 5.7.

5.2 Transitivity of K × R
n extensions

For the sake of completeness, we include the following well-known result.

Proposition 5.8 Let G be a Lie group. Then any compact semigroup S ⊂ G is
actually a subgroup, hence it contains the identity element.

Proof. Let g ∈ S. We show that g−1 ∈ S. Since S is compact, there is an increasing
sequence {ni} such that {gni} converges. Then gni−ni−1−1 lies in S and converges
to g−1. �

Lemma 5.9 Let X be a hyperbolic basic set for f : X → X, and β : X → K × R
n

a continuous cocycle. Suppose that there exists x ∈ X and v ∈ R
n such that (x, v)

is a transitive point for fβ2 . Then every point in X × (K × R
n) is nonwandering

for fβ.

Proof. Let y ∈ X . Because K is compact, the transitivity of fβ2 implies that Lβ(y)
contains an element (k, 0). By Proposition 5.8, (e, 0) ∈ Lβ(x), that is, (y, e, 0) is
nonwandering. Due to the skew-product structure, this is equivalent to the whole
fiber {y} × K × R

n being nonwandering. �

Proof of Theorem 1.8: By Lemma 5.5, there is an open and dense set of cocycles β
possessing the accessibility property for the pair of stable and unstable foliations.
Restricting to the open subset S it follows from [6] that the R

n-extension fβ2

is transitive for an open and dense set of cocycles β ∈ S. By Lemma 5.9, the
corresponding K × R

n-extensions fβ consist of nonwandering points. The result
follows from Lemma 5.4. �
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5.3 The semigroup problem for K × R
n

Theorem 5.10 Let S ⊂ K × R
n. Assume that the closure of the group generated

by S is K ×R
n, and that the projection of S onto R

n does not lie in a half-space.
Then the closure of the semigroup generated by S is K × R

n.

Proof. Let (k0, v0) ∈ S and let T denote the closure of the semigroup generated
by S. We show that (k0, v0)−1 ∈ T .

Note that an element (h, 0) ∈ K × R
n generates a compact subgroup by

Proposition 5.8. Hence, if (h, 0) ∈ T , then (h, 0)−1 ∈ T .
Let π2S be the projection of S on R

n. By assumption, π2S does not lie in a
half-space. Moreover the closure of the group generated by π2S is R

n. It follows
from [15, Lemma 5] that the closure of the semigroup generated by π2S is R

n as
well. Since K is compact, π2T = R

n.
In particular, there exists k1 ∈ K such that (k1,−v0) ∈ T . Let h = k0k1.

Then (h, 0) = (k0, v0)(k1,−v0) ∈ T and so (h, 0)−1 ∈ T . Hence, (k0, v0)−1 =
(k1,−v0)(h, 0)−1 ∈ T . �

6 SE(n)-extensions

Recall that SE(n) = SO(n) � R
n is the group generated by rotations and trans-

lations in R
n. The multiplication in SE(n) is given by (k1, v1)(k2, v2) =

(k1k2, k1v2 + v1).

6.1 Transitivity of SE(2)-extensions

Proposition 6.1 Let X be a hyperbolic attractor for f : X → X and let r > 0. Then
there is a Hölder-open and Cr-dense set of cocycles β : X → SE(2) for which fβ

is transitive.

Proof. By Lemma 5.5, accessibility of the pair of stable and unstable foliations
holds for an open and dense set of cocycles. By [11, Theorem 3.2], the recurrent
points are dense for an open and dense set of cocycles. The result follows from
Lemma 5.4. �

6.2 Generating sets for SE(n)

Lemma 6.2 Let n ≥ 1. The set of (n+1)-tuples that generate R
n as a closed group

is dense in (Rn)n+1.

Proof. See Lemma 2.6 in [14]. �

Lemma 6.3 Let n ≥ 3. The set of (n + 3)-tuples in SE(n) that generate SE(n) as
a closed group is open and dense in SE(n)n+3.
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Proof. Choose an arbitrary (n + 3)-tuple {(ki, vi)}i ⊂ SE(n). It follows from [21]
that we can find k1, k2 arbitrarily close to k1, k2 such that the closed group gener-
ated by k1, k2 is SO(n). Then find ki arbitrarily close to ki, 3 ≤ i ≤ n + 3, so that
the inverses of the elements ki, 3 ≤ i ≤ n+3, are in the group generated by k1, k2.
Hence, there are elements v′i ∈ R

n, 3 ≤ i ≤ n + 3, such that (k
−1

i , v′i) are in the
group generated by {(ki, vi)}2

i=1. Therefore, the group generated by {(ki, vi)}n+3
i=1

contains (ki, vi)(k
−1

i , v′i) = (e, vi + kiv
′
i), 3 ≤ i ≤ n + 3. From Lemma 6.2 it fol-

lows that we can find vectors vi arbitrarily close to vi, 3 ≤ i ≤ n + 3, such that
the (n + 1)-tuple {vi + kiv

′
i)}n+3

i=3 generates a subgroup dense in R
n. If we denote

v1 = v1 and v2 = v2, it follows that R
n is in the closure of the group generated by

the (n + 3)-tuple {(ki, vi)}n+3
i=1 . Since (ki, 0) = (ki, vi)(e,−k

−1

i vi), 1 ≤ i ≤ 2, and
k1, k2 generate a dense subgroup of SO(n), it follows that the closure of the group
generated by the (n + 3)-tuple {(ki, vi)}n+3

i=1 is SE(n), thus proving the density.
By Lemma 4.6, SE(n) is perfect and so openness follows from Lemma 4.4. �

Corollary 6.4 Let X be a basic hyperbolic set for f : X → X, and n ≥ 3, r > 0.
Then, those Cr cocycles β : X → SE(n) for which the stable and unstable foliations
of fβ are ε-accessible for any ε > 0, form a Hölder-open and Cr-dense set.

Proof. Using Lemma 6.3, the proof of the lemma is similar to the proof of ε-
accessibility in [7, Theorem 3.1.1]. �

6.3 The semigroup problem for SE(n)

Lemma 6.5 Let v, w ∈ R
n. If ∠(v, w) > cos−1(−3/4), then

|v + w| < max{|v|, |w|} − min{|v|, |w|}/4.

Proof. Assume that |v| ≥ |w|. Then:

|v + w|2 = |v|2 + |w|2 + 2|v||w| cos∠(v, w) ≤ |v|2 + |w|2 − 3|v||w|/2

= |v|2 + |w|(|w| − 3|v|/2) ≤ |v|2 + |w|(|w| − |w| − |v|/2)

= |v|2 − |v||w|/2 ≤ (|v| − |w|/4)2. �

Lemma 6.6 Let G be a topological group and S ⊂ G. Assume that there is a
compact subset K ⊂ G such that for any g ∈ G there is a word w in the semigroup
generated by S with wg ∈ K. Then the closure of the semigroup generated by S in
G is a group.

Proof. We show that the inverse element of any element g ∈ S belongs to the
closure of the semigroup generated by S.

Let g ∈ S. By the assumption of the lemma there are w1, w2, . . . , wk, . . .
words in the semigroup generated by S such that wkgwk−1g . . . w2gw1g ∈ K for any
k. Since K is compact, there is a subsequence Wi = wkigwki−1g . . . w2gw1g that
converges to an element g0 in the closure of the semigroup generated by S. Consider
now the sequence Wi+1W

−1
i = wki+1g . . . wki+2gwki+1g which is included in the
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semigroup generated by S and converges to identity. It follows that the sequence
Wi+1W

−1
i g−1 = wki+1g . . . wki+2gwki+1 is included in the semigroup generated by

S and converges to g−1. �
Lemma 6.7 Let S ⊂ SE(n), n ≥ 1. Assume that the closure of the group generated
by S is SE(n), and the semigroup generated by S is unbounded. Then there are
constants L > 0, C > 0 such that for any (k, v) ∈ SE(n) with |v| > L, there exists
(k̂, v̂) in the semigroup generated by S such that |v̂ + k̂v| < |v| − C.

Proof. Since the closure of the group generated by S is SE(n), the projection of S
on SO(n) has to generate a dense group. Since SO(n) is compact, it follows from
Proposition 5.8 that the projection of S on SO(n) generates a dense semigroup.
Hence we can find a finite set {(ki, vi)} ⊂ S such that for any v, w ∈ R

n there is
(ki, vi) such that ∠(kiv, w) > cos−1(−9/10). Let N = maxi |vi| for all i.

Choose now an element (k, v) of the semigroup generated by S such that
|v| > M = 100N + 1. Define (ki, vi) = (k, v)(ki, vi) = (kki, v + kvi), and let
C = 4 mini |vi|. Note that C > 0 and |vi − v| ≤ N . Note also that for any
v, v′ ∈ R

n there is (ki, vi) such that ∠(kiv, v′) > cos−1(−9/10).
Assume now that L = max |vi| ≤ |v| + N , and (k, v) ∈ SE(n) with |v| >

L. Choose ki pointing such that ∠(kiv, v) > cos−1(−9/10), and consequently
∠(kiv, vi) > cos−1(−3/4). From Lemma 6.5 it follows now that |kiv + vi| < |v| −
|vi|/4 ≤ |v| − C. �
Theorem 6.8 Let S ⊂ SE(n), n ≥ 1. Assume that the closure of the group gener-
ated by S is SE(n). Then the closure of the semigroup generated by S is SE(n).

Proof. It follows from Proposition 5.8 that the closure of the semigroup generated
by S is unbounded. Hence we can apply Lemma 6.7. Define the compact set K =
SO(n)×D where D ⊂ R

n is the closed disk of radius L centered at 0 and L is the
constant given in Lemma 6.7.

Let g ∈ SE(n). We can apply Lemma 6.7 several times and find an element w
in the semigroup generated by S such that wg ∈ K. It follows now from Lemma 6.6
that the closure of the semigroup generated by S is SE(n). �
Corollary 6.9 Assume n ≥ 3. The set of (n + 3)-tuples in SE(n) that generate
SE(n) as a closed semigroup is open and dense in SE(n)n+3.

Proof. This follows from Lemma 6.3 and Theorem 6.8. �

6.4 Locally constant SE(n)-extensions over subshifts of finite type

Let k ≥ 2, and let A be a k × k 0 − 1 matrix. Define

Σ = ΣA =
{

ω = (ωn)∞−∞ ∈ {1, . . . , k}Z |A(ωn, ωn+1) = 1 for all n ∈ Z

}
.

The map σ : Σ → Σ given by (σω)n = ωn+1 is called a subshift of finite type.
Fix an integer N ≥ 0 and symbols α−N , . . . , αN , and call the subset

Cα−N ,...,αN = {ω ∈ Σ |ωni = αi for i = −N, . . . , N}
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a (symmetric) cylinder of rank N. For any positive integer N we define a partition
of Σ given by the family of symmetric cylinders Cα−N ,...,αN of rank N .

We consider cocycles which are constant over the elements of a finite partition
P of Σ given by cylinders. Such cocycles are called locally constant. Note that
locally constant cocycles are Hölder.

Lemma 6.10 Let σ : Σ → Σ be a transitive subshift of finite type and G a connected
Lie group for which there exists k ≥ 2 such that the set of k-tuples in G that
generate G as a closed semigroup is open and dense in Gk. Then the class of
locally constant cocycles β : Σ → G contains a C0-open and Hölder-dense subset
for which σβ are topologically transitive.

Proof. The proof is similar to arguments in [14], and we refer the reader to that
paper. �

Remark Note that if G contains a noncompact connected semisimple Lie group
then no k as in Lemma 6.10 exists [22, Corollary 7].

Proof of Theorem 1.9: It follows from Corollary 6.9 that the set of (n+3)-tuples in
SE(n) that generate SE(n) as a closed semigroup is open and dense in SE(n)n+3.
Now apply Lemma 6.10. �

7 Some open questions

In this paper, we have explored the validity of Conjecture 1.1 on the stable tran-
sitivity of partially hyperbolic group extensions for various classes of Lie groups.
However, the present results depend significantly on the properties of the basic
set X and the group G. There are many open questions even at the level of the
existence of stably transitive extensions. For instance, suppose X is a hyperbolic
attractor (the simplest case).
(a) Does there exist a stably transitive SE(3) extension of X (more generally,

SE(n) with n ≥ 3 odd)?
(b) Does there exist a stably transitive SL(3, R) extension of X (more generally,

SL(n, R) with n ≥ 3)?
For groups of the form K × R

n with K compact, we prove stable transitivity
for extensions of a hyperbolic attractor, but the situation for general basic sets
remains open:
(c) If X is a general hyperbolic basic set and K is a compact connected Lie group,

does there exist a stably transitive K × R
n-extension of X?

Questions (a) and (c) indicate the lack of knowledge about the relatively
tractable class of groups that are semidirect products K �R

n where K is compact,
despite the progress in [11, 15] and in this paper. Similarly, question (b) illustrates
the situation for semisimple Lie groups other than Sp(2n, R).
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Department of Mathematics
323 Anderson Hall
West Chester University
West Chester, PA 19383, USA

and
Institute of Mathematics of the Romanian Academy
P.O. Box 1–764
RO-70700 Bucharest, Romania
email: vnitica@wcupa.edu

Andrei Török
University of Houston
Department of Mathematics
651 PGH, Houston, TX 77204-3008, USA

and
Institute of Mathematics of the Romanian Academy
P.O. Box 1–764
RO-70700 Bucharest, Romania
email: torok@math.uh.edu

Communicated by Viviane Baladi
submitted 24/05/04, accepted 11/10/04


