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Abstract

We examine the relation between the structure of a network and the spatio-temporally
symmetric periodic dynamics it can support. For solutions in which no cell is sta-
tionary, we show that only networks in which all cells interact with each other,
or which contain a single group of interacting cells which drive the remainder of
the network can exhibit such dynamics robustly. These characteristics of network
architecture are not captured by the typical statistical quantities used to describe
network structure. We illustrate the existence of spatio-temporally periodic solu-
tions through a direct construction using ideas from coupled cell theory and the
theory of weakly coupled oscillators, and show that these solutions can be stable
in a very large region of parameter space. While we consider only a special type of
network behavior, these ideas extend to more general architectures and dynamics.
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1 Introduction

The components of a dynamically evolving network are frequently observed to exhibit coher-
ent behavior ranging from synchrony and phase locking [35,29], to reliably recurring complex
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patterns of activity [23,22,24]. Network architecture plays a significant role in determining
the types of coherent behavior a network can exhibit [26,27,40,42]. Moreover, numerical and
experimental studies have shown that there is frequently a relationship between network
architecture, and its function [36,38,20,8].

It is therefore important to understand the relation between network structure and dynamics.
While methods of statistical physics are frequently useful in the analysis of large networks
with sufficiently coherent (or incoherent) behavior [29,1] they are not as effective in the
case of networks of small to intermediate size. Such networks are of particular interest as
they appear frequently in isolation [19,12,30], and as functional subunits of a larger network
[28,30,43,31].

The relation between network architecture and the conditions for stable synchrony has been
studied in detail (see other articles in this issue). However, there has been much less work
on the general study of more complex types of structured network dynamics. Here, we move
beyond synchrony towards higher complexity and consider spatiotemporally symmetric peri-
odic behavior. While some of the mathematical tools we introduce are specific to the analysis
of the problem at hand, many of the ideas and notions we discuss are applicable in more
general situations.

The main question we address in this article is how network architecture can determine what
types of spatiotemporally structured periodic dynamics the network can support. Such solu-
tions have been studied extensively in the limit of weak interaction between the cells [21,27,2],
and have been particularly useful in modeling rhythmogenesis in neural circuits controlling
motor behavior [28,30,37]. We also consider multifrequency solutions, which also arise in a
number of applications [32,33,41].

Our goal is to investigate the relations between network structure and the existence and
stability of these solutions. We are interested in stability to both perturbations in phase space
(dynamical stability), and perturbations of the vector field (structural stability). Moreover,
we also consider the stability of solutions under the more restricted class of perturbations
that respect network architecture. In the interest of simplifying the statement and proof of
the results we consider only the case in which all cells in the network oscillate, although
the results can be extended to the more general case. In particular, our result provides an
answer to the question raised in [15] of extending to the network setting results on the relation
between the symmetries of a set of equations and the corresponding periodic solutions.

Although we consider the stability of a particular type of network dynamics, the main ideas
can be used to demonstrate that only networks with a particular architecture can support
stable attractors with no stationary cells. We note that these features are not captured by
the statistical measures typically used to characterize network structure such as the degree
distribution (See also [3]).

The existence of stable spatiotemporally symmetric solutions is shown by direct construc-
tion using equations of the type that can be obtained by averaging in networks of weakly
interacting elements [21]. Since these solutions are shown to be stable in a very large region
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of parameter space, it is likely that they are easy to observe. The particular solutions we
construct can be viewed as generalizations of ones studied previously [11,2].

While the question of sufficient and necessary conditions for the existence of a certain class
of solutions may seem abstract, it can be useful in practical applications. The sufficiency
of a condition allows us to conclude that a particular network architecture is capable of
supporting a particular type of solution, and that no further restrictions other than the given
ones need to be considered. On the other hand, the necessity of these results implies that these
conditions cannot be further reduced. For instance, the necessary conditions were crucial in
the derivation of a minimal central pattern generator able to generate a full complement
of animal gaits [17], and the existence results were used to show that biologically inspired
networks can support spatiotemporal patterns reported by hallucinating subjects [15].

Coupled cell theory provides a natural mathematical framework to study these questions [16].
In this theory a cell refers to a system of differential equations and a coupled cell system is
a collection of cells that are coupled together. The network architecture is a directed graph
that indicates which cells are identical, which cells are coupled to which, and which couplings
are identical. Therefore a coupled cell system is simply a class of differential equations that
model a network with a given architecture. A set of equations that are compatible with a
given network architecture will be called admissible.

In the next two sections we motivate the discussion and provide a heuristic statement of the
main results, as well as a precise definitions of spatiotemporally symmetric solutions. We
review the results for the existence of spatiotemporally symmetric solutions of equivariant
equations in Section 4. Coupled cell theory is reviewed in Section 5, and is used to state our
main results precisely in Section 6. The results and the main idea of the construction are
illustrated in several examples in Section 7. The remainder of the paper is devoted to the
proof of the main results using an explicit construction. All steps in the construction are
illustrated using a simple example that accompanies the proof.

2 A heuristic statement of the results

To illustrate the types of solutions that we will consider and the relation between struc-
tural and dynamical stability and network architecture, consider the three-cell networks in
Figure 1.
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Fig. 1. These networks support different types of nontrivial, structurally stable periodic orbits.
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In these networks cells of equal shape are assume to be identical, so that each of the networks
is symmetric under reflection in the vertical axis going through cell 3. Note that this graphical
representation differs slightly from that of [18], as we explain in Section 5. As we will see
in Section 3, certain periodic solutions to the model equations inherit the symmetries of the
network. In particular, if the internal dynamics of the individual cells is assumed to be two
dimensional or higher, then all three networks can support both periodic solutions in which
cells 1 and 2 are one half period out of phase, while cell 3 oscillates at twice the frequency
(see Figure 2), and solutions in which cells 1 and 2 are synchronous, while cell 3 oscillates
with an independent frequency .
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Fig. 2. The networks shown in Figure 1 can support periodic solutions in which cells 1 and 2 (large
amplitudes) are one half period out of phase, while cell 3 (small amplitude) oscillates at twice their
frequency. For networks a) and b) this solution can be hyperbolic and attracting [13].

One of the main questions we ask in this paper is when can such solutions be stable in the
dynamical and structural sense. The situation is relatively simple in the case of networks a)
and b) in Figure 1: In network a) cells interact with one another directly or through inter-
mediary cells (the network is strongly connected). While in network b) not all cells interact,
there is still a single “root” cell that drives the remainder of the network. In fact, both
networks a) and b) can support spatiotemporally symmetric solutions which are hyperbolic,
and dynamically and structurally stable.

Network c) is quite different: There are no cells driving both cells 1 and 2. Moreover, per-
turbations applied to cell 1 cannot be felt by cell 2, and similarly perturbations to cell 2
cannot be felt by cell 1. It turns out that the periodic solutions in this system can be neither
hyperbolic nor attracting, unless either cell 1 or cell 2 or both are not oscillating. Indeed, the
differential equations corresponding to network c) have the form

ẋ1 = f(x1)

ẋ2 = f(x2)

ẋ3 = g(x3, x1, x2)

(1)

and thus the following Remark applies:

Remark 1 If the differential equation x′ = F (x), x = (x1, x2, x3), given by

ẋ1 = f(x1)

ẋ2 = g(x2)

ẋ3 = h(x3, x1, x2)

(2)
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has a hyperbolic periodic solution x(t) = (x1(t), x2(t), x3(t)), then either x1(t) or x2(t) is
constant. That is, not more than one root can oscillate in a hyperbolic periodic solution.

Indeed, the linear equation determining the Floquet multipliers is

ξ̇(t) = (dx(t)F )ξ(t)

and the matrix dx(t)F is lower triangular. Therefore the evolution operator is also lower
triangular, and has two eigenvalues equal to 1. These eigenvalues correspond to the two
diagonal blocks describing the evolution in the spaces of the variables x1 and x2.

Note that one can also give a direct argument, which is simple for an attracting periodic
solution of (2): if both x1(t) or x2(t) were oscillating, then the solution xε(t) = (x1(t), x2(t+
ε), xε

3(t)) with initial condition (x1(0), x2(ε), x3(0)) will never converge to x(t), despite start-
ing as close to it as we desire.

Note that network c) admits solutions for which cells 1 and 2 evolve in perfect synchrony
since the manifold defined by x1 = x2 is invariant. This observation motivates a more specific
question: Can a periodic solution for which cells 1 and 2 oscillate and evolve synchronously
be stable under perturbations that preserve the network architecture, that is perturbations
that preserve the form of the equations given in (1)? We will show that the answer to this
question is positive.

Clearly, it is the difference in structure between the three networks that results in the differ-
ences in their ability to support stable solutions. One of our main goals is to examine what
characteristics of the architecture of general networks prevent the existence of certain stable
solutions. In particular, we concentrate on spatiotemporally symmetric periodic dynamics
for which pairs of oscillators are synchronous or maintain a fixed phase difference. We find
properties that are both necessary and sufficient for such solutions to be stable. Our findings
can be stated heuristically as follows:

“Theorem:” Consider a symmetric coupled cell system composed of cells whose internal
dynamics is at least two-dimensional. There is an admissible vector field supporting periodic,
spatio-temporally symmetric solutions determined by network symmetries. In these solutions
all cells oscillate. Moreover

(1) If the network is strongly connected (all cells influence each other, as in network a), or
there is a cell or a strongly connected group of cells that drives all the other cells (as in
network b), then such solutions can be structurally and dynamically stable.

(2) Otherwise, solutions cannot be dynamically or structurally stable unless some of the
cells are not oscillating. However, under appropriate conditions, the oscillating solutions
persist under perturbations that respect network architecture.

We note that this result applies to the special case of periodic solutions in which groups of
cells are synchronous, that is polysynchronous solutions; see Remark 21. As we discuss in
the next section, these are special examples of spatiotemporally symmetric solutions.
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While we concentrate on the stability of spatiotemporally symmetric solutions, the conditions
for hyperbolicity that we discuss are applicable to more general attractors. In particular, as
discussed in Remark 1, networks of the type illustrated in Figure 1 c) with multiple “roots”
cannot support hyperbolic attractors in which all cells oscillate.

“Theorem:” Only networks that are strongly connected, or have a single strongly connected
group of cells that drives all the rest, can support attracting or hyperbolic sets for which
each cell is not stationary.

More details are provided in section 6.

Remark 2 The conditions for stability we consider are not directly related to the statistical
properties frequently used to describe network architecture, such as degree distribution and
local connectivity. These results suggests that such statistical measures cannot fully charac-
terize the dynamical behavior of a network, regardless of size (see also [3]).

3 Equivariant equations and spatiotemporally symmetric solutions

Our main goal in this section is to review the theory of equivariant differential equations in
the context of networks, and show that spatiotemporally symmetric solutions of a certain
type can be naturally expected in such systems.

Consider again the networks shown in Figure 1. These networks are symmetric under the
permutation of cells 1 and 2 in the sense that if these two cells are physically interchanged
along with their connections, the architecture of the networks is unaltered.

This symmetry must be reflected in the equations that model the network. To make this
relation precise we note that the action of interchanging the two cells in the network can be
viewed as an action of the group Z2 generated by the permutation 1 → 2 and 2 → 1 (we
denote this permutation by (1 2)). More generally, we can define the action of a group of
permutations G on Euclidean space in the following way: Suppose that x ∈ RmK so that
x = (x1, x2, . . . , xK) where xi ∈ Rm. An element γ of the permutation group on K symbols
acts on R

mK by γ(x1, x2, . . . , xK) = (xγ−1(1), xγ−1(2), . . . , xγ−1(K)). The following statement
defines equivariance under general group actions, although we consider only the described
action by permutations.

Definition 3 Let G act on RmK and let F : RmK → RmK . Then F is G-equivariant if
F (γx) = γF (x) for all γ ∈ G, x ∈ RmK .

Indeed, equations (1) are Z2-equivariant, as can be checked directly. It is in this sense that
the symmetry of the network is reflected in the equations that are used to model it. Note
that while all three networks depicted in Figure 1 are Z2 symmetric, their structure is quite
different. Indeed, symmetries capture only some aspects of network structure.
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Symmetries of admissible differential equations are reflected in the structure of their solu-
tions: If F is G-equivariant, and x(t) is a solution of x′ = F (x), then y(t) = γx(t) is a
solution for any γ ∈ G.

The periodic solutions fixed by some elements of the symmetry group G form a special class
and reflect some of the symmetries of the network itself.

Definition 4 Let x(t) be a periodic solution of a G-equivariant differential equation x′ =
f(x). The subgroup K ⊂ G of symmetries that fix x(t) pointwise is the group of spatial
symmetries of x(t). The subgroup H ⊂ G that fixes x(t) orbitwise is the group of spatio-
temporal symmetries. Therefore

K : = {g ∈ G | g(x(t)) = x(t) for all t} (3)

H : = {g ∈ G | g({x(t)}t) = {x(t)}t}, (4)

This definition implies that all the cells that lie on an orbit of K are synchronous. Note that,
by uniqueness of solutions and the fact that G-symmetries take solutions into solutions, for
each γ ∈ H there is a unique s ∈ R/Z such that γ(x(t)) = x(t+ sT ) for all t ∈ R, where T is
the period of the solution x(t). Therefore a solution x(t) with spatio-temporal symmetries H
satisfies xi(t + θi,j) = xj(t) whenever γ−1(i) = j with γ ∈ H. Therefore, while K determines
which cells evolve synchronously, H determines which cells evolve identically up to a phase
shift.

Example 5 Consider the network depicted in Figure 3, and the associated network equations

ẋ1 = f(x1, x3, x4) ẋ2 = f(x2, x1, x5) ẋ3 = f(x3, x2, x6)

ẋ4 = f(x4, x6, x1) ẋ5 = f(x5, x4, x2) ẋ6 = f(x6, x5, x3).
(5)

This network is symmetric under the action of G = Z2 ×Z3 where the generator of Z2 ×{1}
is (1 4)(2 5)(3 6) and the generator of {1} × Z3 is (1 2 3)(4 5 6). If we choose K to be the
subgroup generated by (1 4)(2 5)(3 6), and choose H = G, then the pairs of cells (1, 4), (2, 5)
and (3, 6) evolve synchronously, while each cell in the triplets (1, 2, 3) and (4, 5, 6) is one
third of a period out of phase with the preceding one (see Figure 3).

On the other hand, if K consists of solely the identity, and H is generated by the order 6
element (1 5 3 4 2 6), there will be no synchronous cells. The corresponding spatiotemporally
symmetric solution can be viewed as two “waves” where each of the cells in the group (1, 2, 3)
and (4, 5, 6) is one third out of phase with the others, and the two “waves” are one half period
out of phase.

Note that if the internal dynamics of the cells is at least two dimensional then, by our
Theorem 14, there exist attracting and robust solution with symmetries given by any choice
K ⊂ H ⊂ G = Z2 × Z3.
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Fig. 3. This Z2 × Z3 symmetric network supports several types of spatio-temporally symmetric
solutions. The figure on the right, top shows the timeseries of the phases of cells 1, 2 and 3 in a
network of reduced Hodgkin-Huxley equations [14]. Cells 4, 5 and 6 evolve synchronously with cells
1, 2, and 3, respectively. At the bottom, the shift of the timeseries by one third of the period shows
that cells 1, 2, and 3 evolve identically up to a phase shift.

4 Results for equivariant differential equations: The H/K Theorem

The question we want to address is the following: Given a network whose symmetries are de-
scribed by a group G, what are the pairs K ⊂ H in G that describe possible spatio-temporally
symmetric solutions in the system? In other words, what spatio-temporally symmetric peri-
odic solutions can the network support? Moreover, are there equations which are compatible
with the structure of the network for which such periodic solutions are hyperbolic, or even
attracting?

These questions have been completely answered in the case of G-equivariant systems by the
following theorem

Theorem 6 ([6]) Assume that a G-equivariant ordinary differential equation admits a pe-
riodic solution with spatial symmetry K and spatio-temporal symmetry H. Then:

(a) H/K is cyclic;
(b) K is an isotropy subgroup;
(c) dim Fix(K) ≥ 2, and if dim Fix(K) = 2 then either K = H or H is the normalizer of

K in G;
(d) H fixes a component of Fix(K) \ (

⋃

γ /∈K Fix(γ)).

Conversely, if conditions (a)-(d) hold there exists a G-equivariant system of ordinary differ-
ential equations that admit an attracting periodic solution with (H, K) as symmetries.

However, the symmetries of a network do not fully describe its structure, and the results for
equivariant systems do not carry over to the network setting as the following example shows.

Example 7 Consider the two networks shown in Figure 4, and assume that each cell evolves
in S1, i.e. both are phase oscillator networks. Note that for both networks G = Z2, since both
are symmetric under reflection.

In the case of the network on the left, it is easy to construct examples in which H = G = Z2
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and K consists of the identity so that the two cells oscillate one half period out of phase [2].
Indeed, such examples occur frequently in practice.

On the other hand, a solution with H = G = Z2 cannot exist if phase oscillators form the
network shown on the right. In this case H is generated by (1 2)(3)(4) which means that cells
1 and 2 oscillate one half period out of phase, while cell 4 (and cell 3) oscillates at one half
period out of phase with itself. This implies that cell 4 oscillates at twice the frequency of cells
1 and 2. However, it is easy to check that the subspace defined by x1 = x4 is invariant. It can
be shown that any solution with spatiotemporal symmetry H must cross this subspace [13], a
contradiction.

21

1

2

3 4

Fig. 4. Both of these networks are Z2-symmetric. However, if these are networks of phase oscillators,
then only the left network can support a solution with H = Z2.

The goal of the construction developed in the remainder of this manuscript is to show that,
if the internal phase spaces of the cells comprising the network is at least two dimensional,
then any network with symmetries given by G can support spatio-temporally symmetric
solutions with symmetries K ⊂ H ⊂ G satisfying easily verifiable conditions. The case of
one dimensional internal dynamics is more delicate and will be considered elsewhere. To state
this result precisely we need to review parts of the theory of coupled cell systems [16,18].

5 Review of coupled cell theory

In this section we give two examples in order to review definitions of coupled cell networks
that permit multiple arrows and self-couplings. Precise definitions can be found in [18], and
the comprehensive review article [16].

5.1 Coupled cell networks and admissible vector fields.

Example 8 Consider the coupled cell system (network) in Figure 1c). The set C = {1, 2, 3}
represents the three cells in the network. We write 1 ∼C 2 to indicate that the variables
corresponding to these cells live in the same vector space. The set of edges E = {e1, e2}
consists of the two edges from cells 1 and 2 to cell 3. We write e1 ∼E e2 to indicate that
these two edges represent couplings of equal type. The tail map T assigns to an edge the cell
at its tail, so that T (e1) = 1 and T (e2) = 2. The head map H is defined similarly so that
H(e1) = H(e2) = 3.

9



Note that equivalent arrows must have equivalent tails and heads. Indeed, e1 ∼E e2, H(e1) ∼C

H(e2) and T (e1) ∼C T (e2).

Since for all networks in Figure 1 we can map cell 1 and its set of incoming edges bijectively
(and preserving edge-type) to cell 2 and its respective set of incoming edges, we say that the
two cells are input equivalent, 1 ∼I 2. Input equivalent cells are identical, and differ only in
the cells they receive inputs from.

Remark 9 We point out that our graphical representation of the network differs from that
of [18]: in this paper cells drawn with the same symbol are input equivalent, whereas in [18]
cells drawn with the same symbol are only cell-equivalent, ∼C (and input equivalence is to be
determined by analyzing the network).

To every coupled cell network there corresponds a class of vector fields that are “compatible”
with the labeled graph structure of the network. Such vector fields are said to be admissible
for the given coupled cell network. A system of admissible differential equations will also
be called a coupled cell system. The admissible equations for the network in the preceding
example are given in (1).

5.2 Quotient networks

We describe here the quotient network induced on the fixed-point space Fix(K) of a group
K of symmetries of the network. For the general case, see [18].

Definition 10 By a symmetry of a coupled cell network G we mean a cell-type preserving
permutation κ of the cells which extends to an edge-type preserving permutation κ̃ of the
edges, compatible with the head and tail maps (that is, κ̃(e) ∼E e and T (κ̃(e)) = κ(T (e)),
H(κ̃(e)) = κ(H(e))). In particular, if κ(c) = d then c ∼I d, and one can check that κ is a
symmetry of any G-admissible vector field.

By a group of symmetries of G we mean a group K of permutations of the cells whose
elements are symmetries of G.

The above permutations κ form a group G. This is exactly the group G of symmetries of the
admissible equations for the coupled cell system.

Let K be a group of symmetries of G. Then each orbit of K consist of input-equivalent cells.
Define its fixed-point space by

Fix(K) := {xc = xd | there is κ ∈ K such that κ(c) = d}

= {x ∈ P | κ(x) = x for all κ ∈ K}

where xc is the internal variable of the cell c and P stands for the total space, of (xc)c∈C.
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The quotient network G/K is constructed as follows. The cells of G/K are the equivalence
classes C/K, that is, the cell-orbits of K. Pick a representative ĉ ∈ K(c) from each orbit
K(c) ∈ C/K. The edges of G/K are given by the edges whose head is one of these cells ĉ,
and they are “attached” as follows: if H(e) = ĉ and T (e) = d, then in G/K this becomes an
edge with head K(c) and tail K(d), and inherits the same edge-type as e. [Since K acts by
network symmetries, a different representative from a K-orbit of cells would give the same
edges in G/K.]

It is easy to see that Fix(K) ∼= {(xĉ)ĉ | ĉ the representative of K(c), c ∈ C}, hence G/K is
indeed realized on Fix(K).

A G-admissible vector field on P restricts to a G/K-admissible vector field on Fix(K). Con-
versely, any G/K-admissible vector field on Fix(K) can be lifted to a G-admissible vector
field on P. Instead of describing the general construction [18, Theorem 5.2], we will discuss
in §8.11 only how to lift the vector fields we are interested in. For more details, see [18, §5].

Example 11 Consider the coupled cell in Figure 3 discussed in example 5. If K is the group
generated by (1 4)(2 5)(3 6), then Fix(K) is defined by the equalities x1 = x4, x2 = x5, and
x3 = x6. The quotient network is shown in Figure 5, and the equations restricted to Fix(K)
are G/K-admissible and take the form

ẋ1 = f(x1, x3, x1) ẋ2 = f(x2, x1, x2) ẋ3 = f(x3, x2, x3). (6)

Note that the arrows between the pairs (1, 4), (2, 5) and (3, 6) project to self-couplings in

1 2 3

Fig. 5. The quotient system obtained from the network shown in Figure 3 with K = 〈(1 4)(2 5)(3 6)〉.

this network. This is reflected in the fact that xi enters as an argument twice on the right
hand side of each equation in (6). The resulting network is symmetric under the action of
G/K = Z3.

6 Statement of the main results

Given a network architecture, what are the possible K ⊂ H pairs, that is, what are the possi-
ble spatio-temporally symmetric periodic solutions that the network can support? Moreover,
are there admissible equations for which such periodic solutions are attracting? As illus-
trated in Example 7, different network architectures may have admissible equations that are
G-equivariant for the same group G, but may not support the same types of spatio-temporally
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symmetric solutions. It is therefore necessary to also consider network architecture, in addi-
tion to network symmetries to fully answer these questions.

We make two assumptions about the network dynamics: (2D), the internal dynamics of each
cell is at least two-dimensional, and (OSC), all cells in the network are oscillating. By the
latter we mean:

Definition 12 A solution x(t) of an admissible ODE is called fully oscillatory if all cells
in the coupled cell systems are oscillating, that is xi(t) is non-constant for any cell i in the
network.

The assumption (2D) is made because a network of one dimensional cells supports very
different types of spatiotemporally symmetric solutions than networks of higher dimensional
cells. Networks of cells with internal dynamics in R1 are very restrictive [9]. The case of
phase oscillators, networks of cells with internal dynamics on a circle, is more technical, and
will be considered elsewhere [13]. The assumption (OSC) is made to simplify the statement
and proof of the theorems. While the results can be extended to the non-oscillatory case,
this necessarily involves more intricate conditions about the action of the group G on the
network.

As noted in the previous section, a coupled cell system with symmetries G is G-equivariant.
Hence, the conditions of Theorem 6 are also necessary for the existence of spatio-temporally
symmetric solutions in coupled cell systems. We therefore only need to provide sufficient
conditions.

The result for strongly connected networks is stated in Theorem 14, and the general case
in Theorem 18: for fully oscillatory hyperbolic solutions to exist there must be one strongly
connected component that forces (maybe indirectly) each cell of the network. We thus ob-
tain a complete characterizations of the types of fully oscillatory hyperbolic spatio-temporal
patterns a particular network architecture can support.

We point out that under assumption (2D), conditions (c) and (d) of Theorem 6 are always
satisfied. Details are given at the beginning of Section 9.

To state our results it is convenient to consider the pattern of forcing between cells. Define
the directed graph Γ = Γ(G) derived from the coupled cell system G by placing each cell at
a node, and connecting the nodes corresponding to cells c and d with a directed edge from
c to d whenever there exists an edge e such that H(e) = d and T (e) = c.

We remind the reader of a basic notion from graph theory:

Definition 13 A directed graph is strongly connected if for any pair of nodes c and d there
exists a directed path from c to d.

Thus, if the directed graph Γ(G) is strongly connected, then any cell is forced by any other
cell, although this forcing may not be direct. The following is a special case of the main
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result, and provides sufficient conditions for the existence of spatiotemporally symmetric
periodic solutions:

Theorem 14 Assume that the internal dynamics of each cell in a coupled cell system G is at
least two-dimensional, and that the associated directed graph Γ is strongly connected. Then,
for any pair K ⊂ H where K is an isotropy group, normal in H, with H/K cyclic, there is
an admissible vector field supporting a dynamically and structurally stable, periodic, fully
oscillatory solution with spatio-temporal symmetries given by K ⊂ H.

A slight extension of the condition that the graph Γ be strongly connected is also necessary
for the existence of such solutions. A similar condition has been examined in a different
context in [34].

Definition 15 A strongly connected component of a directed graph Γ is a maximal subgraph
of Γ such that for every pair of nodes c and d, there is a directed path from c to d and a
directed path from d to c.

The strongly connected components partition the nodes into disjoint classes. We denote the
strongly connected component containing a cell c by 〈c〉.

Construct the directed graph Γ̃ = Γ̃(G) in the following way: Each strongly connected com-
ponent of Γ is a node in the graph Γ̃. If Γ contains a directed edge from node c in one strongly
connected component to node d in another strongly connected component, then there is a
directed edge from 〈c〉 to 〈d〉 in Γ̃.

The directed graph Γ̃ shows how the strongly connected components of the graph Γ interact.
See Figure 7 for an example. The graph Γ̃ has no cycles (loops):

Proposition 16 The graph Γ̃ is an acyclic, directed graph.

Proof: Suppose that Γ̃ contains a directed cycle, so that there are two cells c and d belonging
to two different connected components of Γ and a directed path from 〈c〉 to 〈d〉 and from
〈d〉 to 〈c〉. Since the components 〈c〉 and 〈d〉 are strongly connected, this implies that there
is a directed path from c to d and a directed path from d to c in Γ. Therefore c and d must
belong to the same connected component, a contradiction. 2

Definition 17 A node which is not the endpoint of any directed arrow in a directed graph
is called a root node.

We can now state the sufficient and necessary conditions for the existence of fully oscillatory
periodic solutions in a given network.

Theorem 18 Assume that the internal dynamics of each cell in a coupled cell system G is
at least two-dimensional. Then, for any pair K ⊂ H where K is an isotropy group, normal
in H, with H/K cyclic, there is an admissible vector field supporting a hyperbolic, fully
oscillatory, periodic solution with spatio-temporal symmetries given by K ⊂ H if and only if
the derived directed graph Γ̃ has only one root node.
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If these conditions are satisfied the solution can be exponentially attracting, and therefore
both dynamically and structurally stable.

Remark 19 (Structural Stability) In addition, under small H-equivariant perturbations
of the vector field, hyperbolic solution with spatio-temporal symmetries K ⊂ H are perturbed
to solutions with the same symmetries [15].

The proof of Theorem 14 will be given in Section 9, after a class of admissible vector fields
is described in Section 8. Theorem 18 is proven in Section 10.

The next theorem provides the more general conditions under which spatio-temporal solu-
tions can be stable under perturbations that preserve the network architecture.

Theorem 20 (General Existence) Assume that the internal dynamics of each cell in a
coupled cell system G is at least two-dimensional. Then, for any pair K ⊂ H where K is an
isotropy group, normal in H, with H/K cyclic, there is an admissible vector field supporting
a periodic, fully oscillatory solution with spatio-temporal symmetries given by K ⊂ H.

If the “ only one root node” condition is satisfied for the coupled cell system G/K determined
by G on Fix(K), then this solution can be made exponentially attracting inside Fix(K).
Such a solution will persist under perturbations of the vector field that preserve the network
architecture, and, more generally, under all H-equivariant perturbations.

Remark 21 It follows from the proof of Theorem 18 that the above results remain true
if the isotropy group K is replaced by a balanced equivalence relation (see [18, §4] for the
definitions), and there are no extra spatio-temporal symmetries (that is, “H = K”).

7 Examples of spatio-temporally symmetric solutions

We start by presenting examples of coupled cell systems that support particular spatio-
temporally symmetric solutions. In these examples network architecture and the structure
of the solutions are closely related. We construct the solutions with the desired properties
explicitly to illustrate the strategy that will be used in the proof of Theorem 14.

7.1 Ring of oscillators

The differential equations for a unidirectionally coupled ring of identical cells have the general
form

14



ẋ1 = f(x1, xN )

ẋ2 = f(x2, x1)
... (7)

ẋN = f(xN , xN−1).

Thus the set of equations is ZN -equivariant where ZN permutes the variables xi and is
generated by the element that acts by moving cell i to cell i+1 mod N . Models of this type
can capture the essential dynamics of some biological central pattern generators (CPGs)
[39,7,10]. A unidirectional ring of 3 cells is shown in Figure 6a).

1

a) 

2

3 b) 

1 2

3

1

c) 2

3

Fig. 6. The network architectures of the examples discussed in Section 7.

We will construct a system of differential equations that supports a periodic solution with
spatio-temporal symmetry H = G = ZN and spatial symmetry K = {1}. Such solutions
represent a discrete rotating wave in the ring. Each of the cells in the ring follows the same
periodic pattern, but is ±jπ/N out of phase with its neighbors where j and N are mutually
prime. Such solutions occur naturally in a number of examples, including Hopf bifurcations
of systems with symmetries [15], and are frequently found to be stable [4,11].

We assume that xi ∈ R2, and continue the construction in polar coordinates (ri, θi). The
dynamics of the radial variable is defined by

r′i = (1 − ri)ri. (8)

Therefore all solutions away from the origin approach the torus T∗ = {(ri, θi)|ri = 1} asymp-
totically. Moreover, the cells are assumed to interact only through the angular variables θi.
Although this assumption may appear rather special, it is satisfied approximately if the
coupling between the cells is weak [5,27].

If the phase variables satisfy the differential equation

θ̇i = ω + sin(θi−1 − θi +
jπ

N
), (9)

then it is easy to check that θi(t) = ωt + (jiπ)/N is a solution. Therefore the system of
equations (8-9) supports a solution with the desired spatio-temporal symmetries.

We next determine the stability of the solution we have constructed. Since the torus T∗

is asymptotically stable, it is sufficient to examine the dynamics restricted to the torus T
∗

which is determined by equations (9). If we let ∆(θi, θi−1) = cos(θi−1 − θi + jπ/N), the

15



Jacobian of the equations restricted to T∗ takes the form





















−∆(θ1, θN) 0 . . . 0 ∆(θ1, θN)

∆(θ2, θ1) −∆(θ2, θ1) . . . 0 0

. . . . . . . . . . . . . . .

0 0 . . . ∆(θN , θN−1) −∆(θN , θN−1)





















.

Evaluating this Jacobian on the orbit θi(t) = ωt + (jiπ)/N gives the constant, circulant
matrix





















−1 0 . . . 0 1

1 −1 . . . 0 0

. . . . . . . . . . . . . . .

0 0 0 1 −1





















The eigenvalues of this matrix are

λk = −1 + exp(2πik/N),

where λ0 = 0 is the Floquet multiplier corresponding to the direction of the flow. The
remaining eigenvalues have negative real part, showing that the constructed periodic orbit
is stable. In Section 9 we show that the same conclusion can be reached directly without
computing the eigenvalues.

7.2 Multifrequency solutions in bidirectionally coupled rings

In our next example we discuss the construction of a multifrequency solution in a ring of 3
bidirectionally coupled cells shown in Figure 6b). The construction can be extended directly
to rings of an arbitrary odd number of bidirectionally coupled cells. A similar construction
can be carried out for rings with even number of cells by choosing K = {1} and H generated
by a reflection that fixes two diametrically opposite cells.

For the 3-cell case, the admissible differential equations have the form

ẋ1 = f(x1, x2, x3)

ẋ2 = f(x2, x3, x1)

ẋ3 = f(x3, x1, x2)

(10)

with the additional restriction that f(x2, x1, x3) = f(x2, x3, x1). The symmetries of the sys-
tem are given by G = D3. We let K = {1} and H be the subgroup of G that interchanges
cells 1 and 2, and fixes cell 3, so that H = Z2. The T -periodic solution with the desired
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spatio-temporal symmetries must satisfy x1(t) = x2(t + T/2) and x3(t) = x3(t + T/2). In
other words, the projections x1(t) and x2(t) must be equal, up to a shift in time. However
only the frequencies, but not the amplitudes of x3 and x1 are related. In the simplest case
cell 3 evolves at twice the frequency of cells 1 and 2.

We again construct a system of admissible differential equations in polar coordinates that
support a periodic solution with the desired characteristics. Let f(r) be a cubic polynomial
with roots 1, 2, and 3. We also require that r = 1 and r = 3 are hyperbolically stable solutions
of the differential equation

r′i = f(ri)ri i = 1, 2, 3. (11)

It follows that the torus T
∗ = {r1 = r2 = 1, r3 = 3} is normally hyperbolic and stable in R

6,
regardless of the dynamics of the phases.

We assume that the phases satisfy the following differential equations

θ̇1 = ω(r1) + sin [a(r1)θ1 + b(r2)θ2 + b(r3)θ3]

θ̇2 = ω(r2) + sin [a(r2)θ2 + b(r3)θ3 + b(r1)θ1]

θ̇3 = ω(r3) + sin [a(r3)θ3 + b(r1)θ1 + b(r2)θ2] .

(12)

Note that equations (11-12) are admissible. Choose a smooth function ω(r) such that ω(1) =
1 and ω(3) = 2.

For the solutions with the desired spatio-temporal symmetries the phase variables need to
satisfy

θ1(t) = t + γ1, θ2(t) = t + π + γ1, θ3 = 2t + γ2. (13)

Since γ1 and γ2 are arbitrary, we set them to 0. Next we choose the functions a(r) and b(r)
so that (13) is a solution of (12) when r1 = r2 = 1 and r3 = 3. This can be accomplished by
setting

a(1) = −β − 2α, b(1) = β, a(3) = −β, b(3) = α α, β integers,

and extending them to smooth functions of r. On the torus T∗, the equations now take the
form

θ̇1 = 1 + sin [(−β − 2α)θ1 + βθ2 + αθ3]

θ̇2 = 1 + sin [(−β − 2α)θ2 + αθ3 + βθ1]

θ̇3 = 2 + sin [−βθ3 + βθ1 + βθ2] .

The Jacobian evaluated on the periodic orbit (13) on T∗ is again constant















−β − 2α β α

β −β − 2α α

β β −β















. (14)
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The eigenvalues of this matrix are easily computed to be 0,−2α − β,−2(α + β). Since the
only restriction is that α and β are integers, simply choosing these constants to be positive
guarantees that the solution is stable. The fact that α and β can be chosen so that (14) has
one zero and two negative eigenvalues also follows from the more general results discussed
in Section 9.

7.3 Networks with several strongly connected components

Consider the network G shown in Figure 7. The network contains 5 strongly connected
components which are the nodes in the derived graph Γ̃ on the right of the figure. Consider
the subgroup H ≈ Z6 of the symmetries of the associated admissible equations which is
generated by the permutation (1 2 3) (4 6 8) (5 7 9) (10 11 12) (13 14).

1

2

3

4

5 6

7

89

10

11

12

13

14

Fig. 7. The coupled cell system consisting of 5 strongly connected components discussed in §7.3
and the associated derived graph.

Following the previous examples, we specify only the dynamics of the phases for the solution
with the desired spatio-temporal symmetries:

θ1(t) = θ4(t) = θ5(t) = θ10(t) = 4πt θ13(t) = 6πt

θ2(t) = θ6(t) = θ7(t) = θ11(t) = 4πt +
2π

3
θ14(t) = 6πt + π (15)

θ3(t) = θ8(t) = θ9(t) = θ12(t) = 4πt +
4π

3
.

Equations supporting this solution can be constructed explicitly using the ideas developed in
Section 8. Since the derived graph Γ̃ has only a single root node, the conditions of Theorem 18
are satisfied, and this solution can also be made hyperbolic and asymptotically stable.

Consider the network obtained by reversing all the arrows on the left of Figure 7. The
corresponding reduced network Γ̃ has the structure of the network on the right of Figure 7
with arrows reversed. Note that this modified network has the same symmetries as the
network discussed above, but has multiple roots. Therefore, according to Theorem 18 it
cannot support a hyperbolic, fully oscillatory periodic solution.
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8 Construction of admissible vector fields. Stability

Using ideas illustrated in the examples in Section 7, we construct a class of admissible vector
fields, and describe the condition for a vector field within this class to support a dynamically
and structurally stable periodic solution of the desired type. The construction is accompanied
by a concrete example.

8.1 Standing assumptions

Let K ⊂ H be symmetry groups of G, such that K is an isotropy group (that is Fix(K) 6=
{0}), K is normal in H, and H/K is cyclic. Moreover, we assume that the internal dynamics
of each cell has dimension at least two.

8.2 Outcome of the construction

We summarize here the result of our construction. The details are given in §§8.4–8.12 below.
Although in §§8.4–8.10 the notation refers to the groupoid G/K, similar formulas hold for
the groupoid G as well, because the differential equations are of the same type.

For each cell c ∈ C pick a two dimensional subspace in the phase space of c. We may
arrange that the direct sum of these two-dimensional subspaces be a global attractor for the
dynamics. In each of these subspaces we consider polar coordinates, (rc, θc), and write the
ODE as a skew-product over the radial variables. For each cell a number r∗c > 0 will be
selected, and we arrange that the torus {rc = r∗c | c ∈ C} be a local attractor. Near this torus
the ODE becomes a “linear” ODE in the phase-variables, meaning that

θ̇c = ωc + sin



bcθc +
∑

H(e)=c

aeθT (e) + τc



 , c ∈ C (16)

where the sum is over all the edges that end in cell c, and bc, ae are integers, with ae > 0
(see §8.6 and §8.7). We can visualize this data as assigning to each edge e the (positive)
weight ae, and to each cell c its radius r∗c , its frequency ωc, its self-drive weight bc, and
its “phase translation” τc. The assignment is made consistently with the constraints of the
coupled cell system, so that the ODE is admissible. This system admits a solution (see §8.9)

θc(t) = ωct + ηc with ωc > 0, c ∈ C (17)

that will have the symmetries imposed by K and H.

We represent the ODE (16) as (see §8.8)

~̇θ = ~ω + ~sin(A~θ + ~τ ).
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Since ae > 0, it follows that the off-diagonal entries of A are positive exactly when there is
an edge of the graph associated to G, and zero otherwise.

As we discuss in §8.12, the solution (17) is stable if and only if A has one zero eigenvalue
(corresponding to the flow direction ~ω) and all the other eigenvalues have negative real
part. To achieve this we need conditions on the connectivity of the coupled cell system, as
described in Theorems 14 and 18.

8.3 Outline of the construction

We proceed as follows. In §8.4 we show that it is sufficient to only consider systems with
2-dimensional internal dynamics. Next, we construct the vector field on the space Fix(K),
where the desired solution must lie. The admissible differential equations are introduced
in §8.6, and in §8.7 the restrictions of the equations to an invariant torus is described. The
equations are rewritten in a more manageable form in §8.8. The periodic solution with the
desired spatio-temporal symmetries is described in §8.9, and in §8.10 we show that this is
indeed a solution of the ODE introduced in §8.6 if the parameters are chosen appropriately.
The equations on the quotient network are lifted to the full network in §8.11. The stability
of the solution is discussed in §8.12. We accompany the construction with an illustrative
example.

8.4 Two-dimensional internal dynamics suffice

If the internal phase space of the cell c is Pc, choose a two-dimensional linear subspace
P 0

c ⊂ Pc, such that P 0
c = P 0

d whenever c ∼C d (recall that if c ∼C d then Pc = Pd). Once we
constructed an admissible ODE on the coupled cell network “restricted” to P 0 = ⊕P 0

c , it is
straightforward to extend it to an admissible ODE on the whole phase-space P = ⊕Pc, such
that P0 is attracting. Thus, from here on, we assume that the internal dynamics of each cell
is two-dimensional.

8.5 The vector field on Fix(K): K = {1}, H = Zp

Recall the terminology introduced in §5.2. We begin by constructing, in §§8.6–8.10, the
admissible vector field for the quotient network on Fix(K). Note that on Fix(K) the group
K acts as the identity, and H acts as H/K.

Therefore, to construct the vector field on Fix(K) we have to consider only the case K = {1}
and H ∼= Zp. We denote a generator of H by h.
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8.6 The admissible differential equations

For the quotient coupled cell system on Fix(K) we assume the notation of [18, Definition
2.1].

We start by introducing the equivalence relation ∼H induced by H on cells. Two cells c and
d are H-related, c ∼H d, if the cells are on the same H-orbit.

Since the internal dynamics is two dimensional we can write the cell variables xc ∈ P 0
c in

polar coordinates:

xc = (rc cos θc, rc sin θc), rc ∈ [0,∞), θc ∈ R/2πZ, c ∈ C.

For each cell c ∈ C pick a radius r∗c > 0 such that r∗c = r∗d if c ∼H d, and r∗c 6= r∗d otherwise.

The general class of admissible vector fields we consider is defined by

ṙc = fc(rc)

θ̇c = ωc(rc) + αc(rc) sin



bc(rc)θc +
∑

e∈E ,H(e)=c

ae(rc, rT (e))θT (e) + τc(rc)





(18)

where:

1) the functions fc(r), ωc(r), αc(r), ae(r, q), and τc(r) are smooth; moreover, αc(r), ωc(r)
and fc(r) are identically zero for small r so that the equations extend smoothly to the
origin;

2) if αc(rc) 6= 0 then ae(rc, · ), bc(rc) ∈ Z;
3) fc = fd, ωc = ωd, αc = αd, bc = bd, and τc = τd if c and d are input-equivalent, c ∼I d;
4) au = av if u and v are edge-equivalent, u ∼E v.

Note that equations (18) together with conditions 1)–4) define an admissible vector field
which is a skew-product over the radii.

8.7 An invariant torus

The following assumptions ensure that the torus T∗ = {rc = r∗c | c ∈ C} is attractive, and
simplify the construction that will be presented subsequently:

5) fc has stable equilibria at all values r∗d, d ∈ [c]I ;
6) ωc(r) is a constant ωd, and τc(r) is a constant τd, when r is in some neighborhood of r∗d,

d ∈ [c]I ;
7) αc(r) = 1 when r is in some neighborhood of r∗d, d ∈ [c]I.
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Since we will consider only solutions in the vicinity of the torus T∗, we introduce the notation
ωc(r

∗
c ) = ωc, bc(r

∗
c) = bc, ae(r

∗
c , r

∗
d) = ae(c, d) = ae, τc(r

∗
c) = τc. We spell out here conditions

on these values which guarantee that the obtained vector field is admissible:

• the ae(c, d)’s and bc’s are integers;
• ωc, bc, ae(c, d) and τc, are constant along h-orbits (recall that by Definition 10, the generator

h of H extends to an edge-action);
• if two edges of the same type connect the same two cells, then their labels are equal:

ae(c, d) = ae′(c, d) if e ∼E e′.

These restrictions are implemented in the next subsection.

8.8 Simpler form for the equations

For each E-equivalence class φ = [u]E of edges and each pair of H-equivalence classes ρ = [a]H
and ρ′ = [a′]H of cells, introduce the matrices Aφ,ρ,ρ′ which describe the connectivity of the
graph, and Bρ which describe H-orbits. Since H is a symmetry of the coupled cell system,
these matrices commute with all elements of H. We let

Aφ,ρ,ρ′ = (δφ,ρ,ρ′

c,d )c,d∈C

where δφ,ρ,ρ′

c,d :=







#{e ∈ φ | T (e) = d,H(e) = c} if c ∈ ρ and d ∈ ρ′,

0 otherwise,
(19)

where # denotes the cardinality of a set. Therefore, the entry with index c, d of matrix Aφ,ρ,ρ′

equals the number of edges of type φ from cell d to cell c. Let

Bρ = (βρ
c,d)c,d∈C where βρ

c,d :=







1 if c = d ∈ ρ,

0 otherwise.
(20)

The matrices Bρ are diagonal.

Example 22 To illustrate the construction of the described matrices consider the network
shown in Figure 8. Admissible equations for this coupled cell system take the form

ẋ1 = f(x1, x2, x3, x4, x4, x5, x5) ẋ4 = g(x4, x5, x1, x2, x3)

ẋ2 = f(x2, x3, x1, x4, x4, x5, x5) ẋ5 = g(x5, x4, x1, x2, x3)

ẋ3 = f(x3, x1, x2, x4, x4, x5, x5)

where f(x, y, z, t, u, v, w) is symmetric separately in the variables (y, z) and (t, u, v, w), and
g(u, v, x, y, z) is symmetric in the variables (x, y, z). Denote by SN the group of permutation
of N elements. Then these equations are G-equivariant where G = S3 × S2 and S3 acts by
permuting cells 1, 2, and 3, while S2 acts by interchanging cells 4 and 5.
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1 2

3

4 5

Fig. 8. A network composed of two bidirectionally coupled rings discussed in Example 22.

We next construct the matrix A defined in (19). Denote by ρ1 the class consisting of cells 1,
2 and 3, and by ρ2 the class consisting of cells 4 and 5. Following definitions (19) and (20),
we have

Aρ1,ρ1 =





























0 1 1 0 0

1 0 1 0 0

1 1 0 0 0

0 0 0 0 0

0 0 0 0 0





























Aρ1,ρ2 =





























0 0 0 2 2

0 0 0 2 2

0 0 0 2 2

0 0 0 0 0

0 0 0 0 0





























Aρ2,ρ1 =





























0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

1 1 1 0 0

1 1 1 0 0





























Aρ2,ρ2 =





























0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 1

0 0 0 1 0





























where we have suppressed the dependence on the edge type φ since each of the four matrices
corresponds to exactly one edge type. Similarly we have

Bρ1 = diag(1, 1, 1, 0, 0) Bρ2 = diag(0, 0, 0, 1, 1).

♦

Under assumptions 1)–7), in a neighborhood of T∗ (that is, where rc is close to r∗c for each
c ∈ C), the differential equations (18) take the form

ṙc = fc(rc)

θ̇c = ωc + sin



bcθc +
∑

φ∈E/∼

∑

ρ′∈C/H

aφ(ρ, ρ′)
∑

d∈C

δφ,ρ,ρ′

c,d θd + τc



 where ρ = [c]H .
(21)
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Assumption 5) implies that for these equations the torus T∗ is attracting and invariant. We
will henceforth consider the system restricted to this torus. Equations (21) restricted to T∗

can be written more simply using vector notation. Let

~θ = (θc)c∈C, ~ω = (ωc)c∈C, ~η = (ηc)c∈C, and ~τ = (τc)c∈C, (22)

where θc, ηc, and τc are considered (mod 2π), and ωc ∈ R. Equations (21) restricted to T∗

then have the form

~̇θ = ~ω + ~sin





∑

ρ∈C/H

bρB
ρ~θ +

∑

φ∈E/∼

∑

ρ,ρ′∈C/H

aφ(ρ, ρ′)Aφ,ρ,ρ′~θ + ~τ





= ~ω + ~sin(A~θ + ~τ)

(23)

where ~sin(~x) = [sin(x1), . . . , sin(xn)]t and A is the matrix introduced in (21),

A =
∑

ρ∈C/H

bρB
ρ +

∑

φ∈E/∼

∑

ρ,ρ′∈C/H

aφ(ρ, ρ′)Aφ,ρ,ρ′. (24)

Remark 23 Equations of the type (23) are a generalization of those modeling coupled
identical oscillators discussed in [2]. Equations of this type are obtained from averaging or a
normal form reduction in networks of weakly coupled oscillators [21,25].

8.9 The periodic solution

We show that one can choose parameters so that the system (23) admits a periodic solution
with spatio-temporal symmetry H. To simplify the exposition we will consider periodic
solutions of period T = 1. Solutions with other periods can be constructed by an appropriate
scaling of the vector field. We denote equality modulo 2π by =2π.

We will consider solutions of the form

~θ(t) = t~ω + ~η. (25)

For this function to be a periodic solution of the differential equation (23), and to be H-
equivariant, it must satisfy the following conditions

8) ~θ(t) has minimal period T = 1. This condition is satisfied if and only if ~ω =2π
~0, and

s~ω 6=2π
~0 for s ∈ (0, 1).

9) ~θ(t) is a solution of (23), that is ~̇θ = ~ω + ~sin(A~θ + ~τ). This condition is satisfied if and
only if A~ω = ~0 and ~τ =2π −A~η.

10) For a generator h of the group H there exists a rational number sh such that h(~θ(t)) =2π

~θ(t+sh) for all t. This condition is satisfied if and only if (h−I)~ω = ~0, and (h−I)~η =2π

sh~ω.
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Without loss of generality we can assume that the frequencies ωc are positive.

Example 22 (continued) We illustrate how a solution can be chosen to satisfy these
conditions using the system in Figure 8. Consider the subgroup H ⊂ G generated by the
order 6 element h which is the product of the cycles (1 2 3) and (4 5) so that H ≈ Z6. It
can be checked directly that setting sh = 1/6 and

θ1(t) = 4πt θ4(t) = 6πt

θ2(t) = 4πt +
2π

3
θ5(t) = 6πt + π (26)

θ3(t) = 4πt +
4π

3

gives a set of functions with the desired spatio-temporal symmetries.

Note that if the connections between cells of equal type in this network are removed, the
network is still strongly connected. The admissible equations have the form

ẋ1 = f(x1, x4, x4, x5, x5) ẋ4 = g(x4, x1, x2, x3)

ẋ2 = f(x2, x4, x4, x5, x5) ẋ5 = g(x5, x1, x2, x3) (27)

ẋ3 = f(x3, x4, x4, x5, x5)

and are G-equivariant, where G = S3 × S2, as above. If H = Z6 is chosen to act on the
network as above, the solutions (26) again have the desired spatio-temporal symmetries. In
the continuation of the discussion of this example we discuss the ODEs and the stability of
the solution in both networks. ♦

8.10 Construction of ODEs supporting the periodic solutions

Our next goal is to illustrate how a set of periodic functions (25) with the desired spatio-
temporal symmetries can be constructed. We then show how the matrix A and translations
~τ can be chosen so that this set of functions corresponds to an actual solution of the equa-
tion (23), induced on the torus T∗ by an admissible vector field. (The discussion in §8.7
implies that any H-invariant choice of A and ~τ extend to an admissible vector field.)

Lemma 24 The conditions 8) and 10) are equivalent to:

(a) sh = q/p where q is an integer that is relatively prime with p, the order of H.
(b) ωc ∈ 2π(p/nc,H)Z where nc,H = #([c]H), ωc = ωd if c ∈ [d]H , and gcd({ωc/2π | c ∈ C}) =

1. That is, ωc is “inversely proportional” to nc,H , the length of the H-orbit of c.
(c) ~η is determined uniquely up to a choice of phase on each H-equivalence class of cells by

the equation (h− I)~η = sh~ω + ~∆ where ~∆ =2π
~0 is such that the sum of entries of sh~ω + ~∆

is zero over each H-orbit of cells.
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Proof: Recall that p is the order of h, the generator of H. Then psh is an integer, and p is
the smallest multiple of sh for which this is true (otherwise, a lower power of h equals the
identity). Any such choice of sh = q/p where p and q are relatively prime is acceptable.

The vector ~ω is h-invariant, hence it is constant on each H-equivalence class of cells. These
are exactly the cell-orbits of h. We choose its entries positive. By 8), the values ωc ∈ 2πZ must
be relatively prime multiples of 2π. Their values are further constrained by the ~η-equation
in 10), as we describe next.

The vector ~η describes the phase-shift between different cells; it is determined up to a vector
in the kernel of h − I, which corresponds to a change of phase for all the cells in a given
h-orbit. To find ~η we must solve (h − I)~η = sh~ω + ~∆, where ~∆ is a vector with entries in

2πZ. This is possible provided sh~ω + ~∆ is in the range of h − I, which is the orthogonal
complement of the kernel of (h − I)t (here t denotes transposition). This kernel coincides

with the kernel of h − I. Thus, the sum of the entries of sh~ω + ~∆ over each h-orbit must be
zero. This is possible if and only if nc,Hshωc =2π 0. For sh = q/p, we obtain the conditions
nc,Hqωc/p =2π 0. Since gcd(p, q) = 1 and nc,H divides p, this means that ωc/2π ∈ (p/nc,H)Z.

In conclusion: given a collection of relatively prime ωc ∈ 2π(p/nc,H)Z, the phase-shift vector

~η is determined by the vector ~∆. 2

Note that modulo 2π and a vector in ker(h − I), for each ~ω there are only finitely many
possible vectors ~η.

The following Lemma shows how condition 9) can be satisfied.

Lemma 25 Let ~ω and ~η have the values determined in Lemma 24. Given an arbitrary choice
of positive integer values for aφ(ρ, ρ′), there are (unique) rational values for the bρ’s such that
the matrix Ã constructed according to (24) satisfies Ã~ω = ~0. Pick a positive integer ` such
that A := `Ã has integer entries and let ~τ := −A~η.

For this choice of A and ~τ the periodic function (25) is a solution of the equation (23),
determined by an admissible vector field.

Proof: In order to satisfy Ã~ω = ~0 we pick aφ(ρ, ρ′) and compute bρ. Namely, for each
φ ∈ E/ ∼ and ρ, ρ′ ∈ C/H, choose an integer aφ(ρ, ρ′), and set bρ = 0. Denote by A0 the
corresponding matrix given by (24). We show that rational numbers bρ can be found such
that

(

A0 +
∑

ρ∈C/H

bρB
ρ
)

~ω = ~0.

Indeed, since A0 commutes with h and (h−I)~ω = ~0, we conclude that ~ξ := A0~ω ∈ ker(h−I).

This means that ~ξ is constant on each h-orbit. But these orbits are exactly the nonzero
diagonal entries of the Bρ’s. Therefore, the choice bρ = −ξc/ωc for c ∈ ρ yields the desired
conclusion. The values ξc/ωc are rational, because the ωc’s are all rationally related and A0

is an integer matrix.
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Let ` be a positive integer such that A := `Ã has integer entries. According to §8.7 it only
remains to check that the vector ~τ := −A~η is constant (mod 2π) on H-orbits: since A
commutes with h, (h − I)A~η = A(h − I)~η =2π A(sh~ω) =2π

~0, as desired. 2

Proposition 26 A choice for sh, ~ω and ~η consistent with the conclusions of Lemma 24 is
given by

• sh = 1/p,
• ωc = p

#([c]H)
2π,

• For ηc choose an initial cell ck,0 on each cycle k of H. Number the cells in the cycle
sequentially, so that ck,i = hi(ck,0). If lk is the length of the cycle k, then set ηck,i

= i/lk.

This proposition is proved by checking directly that these values satisfy the conclusions of
Lemma 24. We illustrate the conclusions of this section by revisiting the coupled cell system
introduced in Example 22.

Example 22 (continued) Consider the network described in Example 22. According to
Proposition 26 we can choose sh = 1/6, ~ω = 2π(2, 2, 2, 3, 3), and ~η = 2π(0, 1/3, 2/3, 0, 1/2).
This leads to the solution specified in (26).

Therefore the coupling matrix A is obtained as

Ã = αAρ1,ρ1 + βAρ1,ρ2 + δAρ2,ρ1 + γAρ2,ρ2 + b1B
ρ1 + b2B

ρ2 =





























b1 α α 2β 2β

α b1 α 2β 2β

α α b1 2β 2β

δ δ δ b2 γ

δ δ δ γ b2





























(28)

The choice b1 = −2α − 6β and b2 = −2δ − γ is needed for Ã~ω = 0. It is also immediate
that there is an integer ` such that if b1 and b2 are determined by these equations, for
α, β, γ, δ ∈ Z, then A = `Ã satisfies A~η =2π

~0 hence one can choose ~τ = ~0. By a slight abuse
of notation, we will denote the entries of this new matrix A by α, β, γ, δ so that it has the
form given in (28).

In the case of the network whose evolution is given by equations (27), the matrix A has the
same form as above with α = γ = 0. ♦

8.11 Lifting from the quotient network

We extend now the vector field constructed on Fix(K) to the whole space, and conclude that
all the notations and formulas lift in a natural way.
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Assume given the coupled cell system G, and K ⊂ H as described in §8.1. To distinguish
between G and G/K, we denote the cells CG and edges EG of G by Greek letters, and keep
the current notation for the cells C and edges E of G/K. By §8.4 we may assume that each
cell γ ∈ CG has two-dimensional internal dynamics; for each cell γ, let (rγ, θγ) be the polar
coordinates in that space. Recall (see §5.2) that there are maps QC : CG → C and QE : EG → E
defined as follows: QC(γ) is the K-orbit of γ, and for edges ε ∈ EG with head γ, QE is an
edge-type preserving bijection onto the edges e ∈ E having head QC(γ). If there is more than
one such bijections, any one of them can be used.

Assume the vector field on Fix(K) is given by (18), which for c ∈ C has the form

ṙc = fc(rc)

θ̇c = ωc(rc) + αc(rc) sin



bc(rc)θc +
∑

e∈E ,H(e)=c

ae(rc, rT (e))θT (e) + τc(rc)



 .

Then the lifted vector field is

ṙγ = fc(rγ)

θ̇γ = ωc(rγ) + αc(rγ) sin



bc(rγ)θγ +
∑

ε∈EG ,H(ε)=γ

aQE(e)(rγ, rT (ε))θT (e) + τc(rγ)



 ,
(29)

where γ ∈ CG and c = QC(γ).

The results obtained so far carry over without any essential modification:

Lemma 27 Assume the current conditions on the vector field on Fix(K), and consider the
lifted vector field (29). Then:

(a) The torus T∗
G := {rγ = r∗QC(γ) | γ ∈ GC} is a local attractor.

(b) On this torus the equations take the same form as (23), namely

~̇θ = ~ω + ~sin





∑

ρ∈CG/H

bρB
ρ
G
~θ +

∑

φ∈EG/∼

∑

ρ,ρ′∈CG/H

aφ(ρ, ρ′)Aφ,ρ,ρ′

G
~θ + ~τ





= ~ω + ~sin(AG
~θ + ~τ)

(30)

where the matrices Aφ,ρ,ρ′ and Bρ introduced in (19) and (20) should be computed for
G instead of G/K, and the frequency and translation vectors lift via QC:

ωγ = ωQC(γ), τγ = τQC(γ)

(c) The periodic solution considered in §8.9 lifts to

~θ(t) = t~ω + ~η (31)

with the phase-shift lifted via QC as well: ηγ = ηQC(γ).
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In conclusion:

• The matrix AG can have negative entries only on its diagonal.
• The off-diagonal entry AG(γ, δ) is positive exactly when there is an edge in G with head γ

and tail δ (and zero otherwise).
• ~ω is a positive vector in the kernel of AG.

Proof: The claim in (a) follows from assumption 5) of §8.7.

For the other statements, we prefer to describe the lifted equations using the language
introduced in §8.2. The equation on Fix(K) associated to each edge e an integer weight
aφ(ρ, ρ′) > 0 (see §8.8 and Lemma 25), and to each cell c a radius r∗c > 0, a frequency ωc > 0,
a self-drive weight bc ∈ Z, a phase-shift ηc, and a translation τc. When considering the lifted
equations on the torus T∗

G, we only have to lift these values through QE and QC. 2

Example 28 To illustrate this lifting procedure, we give an example for the quotient de-
scribed in Example 11 of the coupled cell system of Example 5. We describe the vector fields
only in the vicinity of the attracting invariant tori T∗ and T∗

G.

On the quotient G/K number the cells C = {1, 2, 3} and consider the vector field determined
by equation (18) after setting r∗i = 1, ωi = 2, ηi = 2πi/3, τi = 2π/3, bi = −6, the strength of
the interaction between cell i to i + 1 to 4, so that Ai,i+1 = 4, and the strength of drive from
cell i to itself to 2, so that Ai,i = 2. Equation (18) then takes the form

ṙi =f(ri)

θ̇i =2 + sin(−6θi + 2θi + 4θi−1 + 2π/3) = 2 + sin(−4θi + 4θi−1 + 2π/3),

where f(1) = 0, f ′(1) < 0. It admits the solution ri = 1, θi = 2t + 2πi/3.

According to the discussion in this section, this vector field is lifted to

ṙi =f(ri), 1 ≤ i ≤ 6

θ̇1 =2 + sin(−6θ1 + 2θ4 + 4θ3 + 2π/3) θ̇4 = 2 + sin(−6θ4 + 2θ1 + 4θ6 + 2π/3)

θ̇2 =2 + sin(−6θ2 + 2θ5 + 4θ1 + 2π/3) θ̇5 = 2 + sin(−6θ5 + 2θ2 + 4θ4 + 2π/3)

θ̇3 =2 + sin(−6θ3 + 2θ6 + 4θ2 + 2π/3) θ̇6 = 2 + sin(−6θ6 + 2θ3 + 4θ2 + 2π/3)

and the solution lifts to ri = 1, θ1 = θ4 = 2t + 2π/3, θ2 = θ5 = 2t + 2 · 2π/3, θ3 = θ6 =
2t + 3 · 2π/3 =2π 2t. ♦

8.12 Stability of the periodic solution

We analyze now the stability of the solution (31) described in Lemma 27. In the vicinity of
the attracting torus T

∗
G , the system of equations (29) takes the form (21), where the latter

equations should be considered for the full network G instead of the quotient G/K.
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Recall that the Floquet multipliers, describing the stability to variations x(t)+ξ(t) along the
solution x(t) of the ODE ẋ = f(x), are determined by the linear equation ξ̇(t) = (dx(t)f)ξ(t).
Since the invariant torus T∗

G is locally attracting, we only have to analyze stability on T∗
G.

If, for simplicity, we write the equation (30) as

θ̇c = ωc + sin(
∑

d∈CG

ac,dθd + τc), c ∈ CG (32)

then the linearization of the equation around the periodic solution has the form

ξ̇c =
∑

d∈CG

cos(
∑

d′∈CG

ac,dθd′ + τc)ac,dξd, c ∈ CG,

where ~θ is a periodic solution of (32). By construction
∑

d′∈CG ac,dθd′ + τc is a multiple of 2π,
so that

ξ̇c =
∑

d∈CG

ac,dξd, c ∈ CG .

Following our earlier convention, we write this equation as

~̇ξ(t) = AG
~ξ(t), (33)

where
~̇θ = ~ω + ~sin(AG

~θ + ~τ)

are the equations (30) written in vector form. The solution (31) is stable if the matrix AG

has all eigenvalues in the left half plane, except the one zero eigenvalue corresponding to the
flow direction.

9 Proof of Theorem 14

We describe first why assumption (2D) implies conditions (c) and (d) of Theorem 6. Since
the group G acts by permutation on the cells of the network and the internal dynamics of
each cell is at least two-dimensional, the spaces Fix(γ) are of codimension two or higher for
any nontrivial γ ∈ G. Therefore Fix(K)\ (

⋃

γ /∈K Fix(γ)) is connected, which is condition (d).
Similarly, dim Fix(K) = 2 implies that all cells are synchronous on the periodic solution of
interest. Therefore H = K, and thus condition (c) holds as well.

In the remainder of this section we use the results of the preceding construction to complete
the proof of Theorem 14, and illustrate the result using Example 22.

In order to give more precise references, we use the notations introduced in Section 8 for the
G/K-admissible vector field (18), instead of its lift (29). It is easy to check (see Lemma 27)
that the arguments remain valid for the lifted vector field.
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Proof of Theorem 14: By Lemmas 24 and 25, one can find an admissible vector field (18)
which restricts to (23) on T∗. By construction A~ω = ~0, where ~ω is the vector with positive
entries described in Lemma 24.

From Lemma 25 it follows that the matrix A = (ac,d)c,d∈C can be chosen to have negative
entries only on the diagonal, and positive off-diagonal entries ac,d whenever there is an edge
in G from d to c.

Pick a value a > 0 such that M := A + aI has positive diagonal.

Because the diagonal of M is positive, the assumption that the graph Γ associated to G is
strongly connected implies that M is a primitive matrix, that is, there is a power of M that
has only positive entries.

Therefore, by the Perron-Frobenius Theorem, M has a unique positive eigenvector, and the
corresponding (positive) eigenvalue is simple and strictly larger than the absolute value of
all other eigenvalues of M .

But ~ω is a vector with positive entries and M~ω = a~ω, hence a must be the leading eigenvalue
of M .

This shows that A = M − aI has eigenvalues inside the circle {z ∈ C | |z + a| < a} ⊂ {z ∈
C | <(z) < 0}, except for the eigenvalue zero that has multiplicity one. By §8.12, these are
the properties needed for the stability of (25). 2

Example 22 (continued) To illustrate this result, we continue the construction in the case
of the networks introduced in Example 22. The eigenvalues of the matrix (28) are given by
0,−3(α+2β),−3(α+2β),−2(3β+δ), and −2(δ+γ), where the zero eigenvalue corresponds to
the eigenvector parallel to the solution constructed in the example. The remaining eigenvalues
are clearly negative if the off-diagonal elements α, β, γ and δ of the matrix A are chosen to be
positive. Since these parameters can be freely specified, the constructed solution can always
be made stable.

In the second case, when there are no connections between cells of equal type, the coupling
matrix A has the form given in (28) with α = γ = 0. This matrix again has one zero
eigenvalue, and 4 negative eigenvalues as long as β and δ are chosen to be negative. ♦

10 Proof of Theorem 18

We conclude with the proof of the more general Theorem 18. The proof also shows that
the the spatio-temporally symmetric solution is stable whenever the off-diagonal entries of
the coupling matrix A are positive. This is a surprisingly large set of parameters. Therefore,
one could expect to observe such solutions in practice, when the admissible equations are
obtained by averaging or other reduction methods.
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We begin with a few preliminary lemmas. We recall the following result, related to the
Perron-Frobenius Theorem, and we include a proof for completeness.

Lemma 29 Assume that the square matrix A has non-negative entries, and admits an eigen-
vector v with positive entries, associated to the (non-negative) eigenvalue µ. Then the spectral
radius of A is at most µ (that is, the absolute values of the eigenvalues of A are at most µ).

Therefore, the spectrum of A − µI lies in the left half plane, and it intersects the imaginary
axis only at zero, which corresponds to the eigenvalue µ of A (note that the multiplicity of
zero in the spectrum may be larger than one).

Proof: Let λ be an eigenvalue of A. Then λ is also an eigenvalue of At. Let w 6= 0 be such
that Atw = λw. Denote by |w| the vector whose entries are the absolute values of the entries
of w. Then |λ||w| ≤ At|w|, where ≤ between two vectors means that their corresponding
entries are ordered. This implies that

〈|λ||w|, v〉 ≤ 〈At|w|, v〉 = 〈|w|, Av〉 = 〈|w|, µv〉,

which shows that |λ| ≤ µ because 〈|w|, v〉 > 0. 2

Lemma 30 Assume that the non-negative block lower triangular matrix

M =







B 0

C D





 (34)

has an eigenvector (v∗, w∗)t with positive entries associated to the (positive) eigenvalue µ. If
the matrix C is non-zero and the matrix D is primitive (or even irreducible), then µ is not
an eigenvalue of D.

Proof: For simplicity we use R ≥ 0 to denote that the matrix or vector R has non-zero
entries, and R > 0 to denote that all entries of R are positive.

Assume by contradiction that µ is an eigenvalue of D, and hence of Dt. By Lemma 29, M has
no eigenvalue of absolute value larger than µ. Therefore µ is the leading positive eigenvalue
of D and Dt, and, by the Perron-Frobenius Theorem, we can pick a vector u > 0 satisfying
Dtu = µu. The relation M(v∗, w∗)t = µ(v∗, w∗)t shows that

Cv∗ + Dw∗ = µw∗.

Then

〈µDw∗, u〉 = 〈µw∗, Dtu〉 = 〈µw∗, µu〉 = 〈Cv∗ + Dw∗, µu〉 = 〈Cv∗, µu〉 + 〈Dw∗, µu〉,

which implies that
〈Cv∗, u〉 = 0.

Since u > 0 and Cv∗ ≥ 0 it follows that Cv∗ = 0. But v∗ > 0 and C ≥ 0, hence Cv∗ = 0
only if C = 0, a contradiction. 2
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Proof of Theorem 18: From Remark 1 it follows that fully oscillatory hyperbolic periodic
solutions cannot exist if the graph Γ̃ has more than one root node.

To prove sufficiency, we assume that a differential equation was constructed exactly as spec-
ified in Section 8. As in the preceding section, we need to show that the coupling coefficients
can be chosen so that the matrix AG of equation (33) has negative eigenvalues, except for
the eigenvector ~ω. To this purpose we use Lemma 30.

The N nodes of the directed graph Γ̃ can be numbered so that i is a terminal node only for
arrows that emanate from nodes j < i. This follows from the fact that the Γ̃ is acyclic and
can be accomplished as follows: Let G0 be the set consisting of the root node and denote the
root node by 0. Let G1 be the set of all nodes that receive inputs only from the root node.
Number the nodes in G1 sequentially, starting with 1. Continue inductively by letting Gi be
the set of nodes that receive inputs only from nodes in ∪i−1

j=0Gj and numbering the nodes
sequentially.

Once the nodes of Γ̃ (that is, the strongly connected components of Γ) are enumerated, the
theorem can be proved by induction. Let Γ̃i be the subgraph of Γ̃ containing nodes 0 through
i and all directed arrows between them. The system of differential equations describing the
evolution of the network can be restricted to this subgraph, since the entire system is a skew
product over the cells contained in the nodes of Γ̃i.

Since by assumption the root node corresponds to a strongly connected subgraph of the
full connectivity graph Γ, the theorem holds for the subgraph Γ̃0 as a direct consequence of
Theorem 14. This proves the base case of the induction.

Assume next that we have shown that the theorem holds on the subgraph Γ̃i. By construction
the matrix A can be chosen to have non-negative entries everywhere except on the diagonal,
and A~ω = 0. Therefore, there exists an a > 0 such that M := A + aI is a non-negative
matrix with eigenvalue a and associated eigenvector ~ω. Denote by Mi and ~ωi the restriction
of the matrix M and the vector ~ω to the cells contained in the nodes of Γ̃i. By our choice of
the numbering of the nodes in Γ̃, the matrix Mi+1 has the form

Mi+1 =







Mi 0

Ci+1 Di+1





 . (35)

Clearly, Mi+1 has a positive eigenvalue a, and an associated eigenvector ~ωi+1 with positive
entries. Moreover, by the induction hypothesis a is a simple eigenvalue of Mi. Since there is
an arrow from some node of Γ̃i to the node i + 1, the matrix Ci+1 is non-zero. The matrix
Di+1 is primitive since the node i + 1 corresponds to a strongly connected component of the
original directed graph Γ. Therefore the matrix Mi+1 satisfies the conditions of Lemma 30
and the theorem is proved by induction. 2
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[14] M. Golubitsky, K. Josić, and E. Shea-Brown. Winding numbers and average frequencies in
phase oscillator networks. J. Nonlinear Sci., 16:201–231, 2006.

[15] M. Golubitsky and I. Stewart. The symmetry perspective, volume 200 of Progress in
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