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Abstract

Increments in financial markets have anomalous statistical properties including fat-tailed dis-

tributions and volatility clustering (i.e., the autocorrelation functions of return increments decay

quickly but those of the squared increments decay slowly). One of the central questions in financial

market analysis is whether the nature of the underlying stochastic process can be deduced from

these statistical properties. We have shown previously that a class of variable diffusion processes

have fat-tailed distributions. Here we show analytically that such models also exhibit volatility

clustering. To our knowledge, this is the first case where clustering of volatility is proven analyti-

cally in a model.

Our results are compatible with the viewpoint that variable diffusion processes are possible

models for financial markets.

∗ Corresponding author. Email: torok@math.uh.edu.
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I. INTRODUCTION

Geometric Brownian motion is a canonical model for the price of a commodity Pt as a

function of time t [1, 2], describing the time evolution as

Pt = P0e
µt+σBt

where µ and σ > 0 are constants, and Bt is a standard Brownian motion. In this model, the

return Xt := ln Pt of the commodity experiences stochastic dynamics

dXt = µdt + σdBt.

Under this scenario, the stochastic increments ∆Xτ = Xt+τ−Xt over a time interval (t, t+τ)

are independent of t and are distributed normally as N (µτ, σ2τ). It has been realized over

the last decade however that increments of financial instruments lie either on exponential

or on fat-tailed distributions, and furthermore that there exist long-range auto-correlations

[3, 4]. In this paper we model commodity prices or currency exchange rates by a stochastic

differential equation

dXt = σ(Xt, t)dBt

with a place and time dependent diffusion coefficient given by σ(x, t) =
√

1 + εx2

t
. This

model incorporates the assumption that large changes in the price increases the volatility of

the underlying commodity. It is also mathematically tractable and conceptually simple. In-

crements in return of the resulting process have been shown to lie on fat-tailed distributions

[5]. Below we compute moments and auto-correlation functions for the process. Part of the

motivation for this work was to show that such variable diffusion processes exhibit “clus-

tering of volatility”, i.e., the observation that sample autocorrelation functions of returns in

financial markets may decay quickly but their absolute or squared increments decay much

more slowly [6–8] .

The model studied here is an example of a variable diffusion process [5], where the stan-

dard deviation has the form σ(u), with u = x/
√

t. When the stochastic process is initiated

by x = 0 at t = 0, the dynamics of the distribution W (x, t) of the random variable X(t) at

time t is given by the Fokker-Planck equation

∂

∂t
W (x, t) =

1

2

∂2

∂x2

(
σ

(
x√
t

)2

W (x, t)

)
.
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For such variable diffusion processes, it has been shown that W (x, t) scales according to [5]

W (x, t) =
1√
t
F(u),

where F(u) is referred to as the scaling function. Furthermore, when σ(u) is symmetric

(σ(u) = σ(−u)),

F(u) =
1

σ(u)2
exp

(
−
∫ u

dy
y

σ(y)2

)
,

and W (·, t) is also symmetric. The moments Mn(t) of W (x, t) scale according to

Mn(t) ∼ tn/2 for n even, Mn(t) = 0 for n odd.

Note that the Fokker-Planck formalism describes the evolution of the distribution W (x, t);

however, it is not possible to use it to calculate the behavior of auto-correlations. The latter

requires a Langevin formulation of the process which is outlined here.

For the model σ(u)2 = 1 + εu2 used here, the scaling function has the form [5]

F(u) =
cε

(1 + εu2)1+(1/2ε)
.

Note that the even moments of order larger or equal to 1
ε

+ 1 diverge. When the even

moments exist, they are given, inductively, by

M2n(t) =
t

1
2n−1

− ε
M2n−2(t), (1)

with M0(t) = 1. Calculations below require the 4-th order moments to exist; thus it is

necessary that 0 ≤ ε < 1/3.

Autocorrelation functions in financial markets exhibit anomalous features as well [6, 7].

In particular, consider the autocorrelation function of the increments in the signal Xt

A1(t1, t2; τ) := Cor ((Xt1+τ −Xt1), (Xt2+τ −Xt2)) ,

and that of the square of the increments

A2(t1, t2; τ) := Cor
(
(Xt1+τ −Xt1)

2, (Xt2+τ −Xt2)
2
)
,

where the correlation function is defined in Eqn.(2) below. Note that, if the stochastic

process has stationary increments, then A1(t1, t2; τ) and A2(t1, t2; τ) are functions of t2 − t1

and τ .
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Most analyses of financial markets have been conducted under this stationarity assump-

tion, and hence that A1(t1, t2; τ) = A1(t1 − t2; τ) and A2(t1, t2; τ) = A2(t1 − t2; τ). For

returns Xt of (for example) currency rates, A1(t1− t2; τ) has been shown to effectively van-

ish for |t1− t2| larger than 10 minutes, indicating that the signal is uncorrelated beyond this

period. It has also been shown that A2(t1 − t2; τ) decays slowly as a function of |t1 − t2|.

This phenomenon is referred to as volatility clustering.

A. The Main Result

The main result of the paper is that our variable diffusion processes exhibit volatility

clustering. More precisely, as shown below, although increments of the variable diffusion

process we consider are not stationary, the autocorrelation function has the asymptotics

A2(t1, t1 + T ; τ) ∼ CT ε−1 as T →∞, with a factor C that depends on t1 and τ (as well as

the parameters of the SDE).

II. CORRELATION COMPUTATIONS

Recall that the correlation function between two random variables X and Y is given by

Cor(X, Y ) :=
E(XY )− E(X)E(Y )√

Var(X)
√

Var(Y )
, Var(X) = E(X2)− E(X)2. (2)

It can be expressed using the covariance

Cov(X, Y ) := E(XY )− E(X)E(Y ),

since Var(X) = Cov(X, X). In view of these formulas, the autocorrelation functions (or

correlation coefficients) A1(t1, t2; τ) and A2(t1, t2; τ) can be computed using covariances. As

shown below, the latter can be calculated using expected values of products of two or four

X’s:

E(XtXt+τ ) and E(XtXt+τXt+ωXt+λ),

where 0 ≤ τ ≤ ω ≤ λ. Note that since Xt is a martingale, some of these expected values

coincide. For example, if 0 ≤ τ ≤ ω ≤ λ then

E(XtXt+τXt+ωXt+λ) = E(XtXt+τX
2
t+ω).
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A. The stochastic process

In order to calculate the expectations, we consider the stochastic process Xa, a > 0,

defined by

dXa
t = σa(X

a
t , t)dBt, Xa

0 = 0, σa(x, t) =

√
1 + ε

x2

t + a

We consider the case a > 0 because, in contrast to the SDE with σ0(x, t) = σ(x, t) =√
1 + εx2

t
which is undefined as t → 0, standard Itô calculus techniques apply to the SDE

with diffusion σa(x, t), a > 0. Whether the SDE has a (unique) solution for a = 0 and if the

procedures used here are valid for this case will be studied elsewhere.

We note however that one can formally do the computations that follow also for a = 0.

For 0 ≤ ε < 1/3, the limit as a → 0+ of the formulas that we obtain coincide with their

versions for a = 0. This is in agreement with the numerical simulations for the case a = 0

(see Figure 1).

B. Notations

We introduce the following abbreviation:

Eαβγ...(t, τ, ω, . . . ) := E(Xα
t Xβ

t+τX
γ
t+τ+ω . . . ),

that is, the subscripts of E indicate the exponents, and the variables τ, ω, . . . indicate the

time-shifts. For example,

E112(t, τ, ω) = E(XtXt+τX
2
t+τ+ω).

The corresponding expected values of Xa are denoted by Ea. However, since most calcu-

lations are performed for Xa and carrying the superscript a is cumbersome, we will simplify

the notation by representing it by X. Thus, for example, we will use Xt for Xa
t . Further,

Ea(XtX
3
t+τ ) stands for E(Xa

t (Xa
t+τ )

3), and Ea
112(t, τ, ω) stands for E(Xa

t Xa
t+τ (X

a
t+τ+ω)2).

Unless mentioned otherwise, ε, τ, ω, λ, · · · ≥ 0.

C. Computation of E(A(Xa
t+τ )

k)

Assume that the random variable A is in Fa
t (i.e., depends on Xs = Xa

s and Bs, s ≤ t).

We want to compute E(A(Xa
t+τ )

k) = Ea(AXk
t+τ ) for t, τ ≥ 0.
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The idea is to write, using Itô’s formula, an SDE for the stochastic process τ 7→ (Xa
t+τ )

k.

This leads, given the expression of σa, to an equation that can be solved recursively for the

expectations Ea(AXk
t+τ ). We present next the details.

As before, simplify the notation using X̃τ := Xa
t+τ . Then X̃τ satisfies the SDE

dX̃τ = σa(X̃τ , t + τ)dBτ , X̃0 = Xa
t .

Denote by dτ the (stochastic) differential with respect to τ . From Itô’s formula, for k ≥ 2:

dτX̃
k
τ = kX̃k−1

τ dτX̃τ +
1

2
k(k − 1)X̃k−2

τ [dτX̃τ ]
2

= k

(
1 + ε

X̃2
τ

t + a + τ

)1/2

X̃k−1
τ dBτ +

1

2
k(k − 1)

(
1 + ε

X̃2
τ

t + a + τ

)
X̃k−2

τ dτ.

Write this in integral form:

X̃k
τ = X̃k

0 +

∫
k

(
1 + ε

X̃2
τ

t + a + τ

)1/2

X̃k−1
τ dBτ +

1

2
k(k − 1)

∫ (
1 + ε

X̃2
τ

t + a + τ

)
X̃k−2

τ dτ.

Multiply by A, take expected values noting that the integral of the dBτ -part has zero

expected value, and we obtain

Ea(AXk
t+τ ) = Ea(AXk

t ) +
1

2
k(k − 1)

∫ τ

0

Ea

(
A

(
1 + ε

X2
t+s

t + a + s

)
Xk−2

t+s

)
ds

so

d

dτ
Ea(AXk

t+τ ) =
k(k − 1)

2

[
Ea(AXk−2

t+τ ) +
ε

t + a + τ
Ea(AXk

t+τ )

]
, t, τ ≥ 0, k ≥ 2. (3)

Now solve (3) with respect to τ , having initial condition at τ = 0 given by Ea(AXk
t ).

For k = 2 and ε 6= 1 one obtains

Ea(AX2
t+τ ) =

Ea(A)

1− ε
(t + a + τ) +

[
Ea(AX2

t )− Ea(A)

1− ε
(t + a)

](
t + τ + a

t + a

)ε

. (4)

For k = 3 and ε 6= 1/3, using the fact that Ea(AXt+τ ) = Ea(AXt) by the martingale

property, one obtains

Ea(AX3
t+τ ) =

3Ea(AXt)

1− 3ε
(t + a + τ) +

[
Ea(AX3

t )− 3Ea(AXt)

1− 3ε
(t + a)

](
t + a + τ

t + a

)3ε

. (5)

This method can be used recursively to evaluate Ea(AXk
t+τ ) for k ≥ 4.
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D. The moments: Ea(Xk
t )

We use the method of section IIC with A = 1 and t = 0. We relabel τ to t. Recall that

Ea
k(t) = E((Xa

t )k) by the notation introduced earlier. Then (3) becomes

d

dt
Ea

k(t) =
k(k − 1)

2

[
Ea

k−2(t) +
ε

t + a
Ea

k(t)

]
, t > 0 (6)

with Ea
k(0) = 0.

We do not need odd moments, but one can notice that the first moment, Ea(Xt), is equal

to Ea(X0) = 0 because Xt is a martingale. From (6), it then follows that all odd moments

are zero.

For k = 2 and ε 6= 1, one has from (4) that

Ea
2(t) =

t + a

1− ε
− a1−ε(t + a)ε

1− ε
(7)

Solving (6) for k = 4 and ε 6∈ {1/5, 1/3, 1} one obtains

Ea
4(t) =

3 (a + t)2

(1− 3 ε) (1− ε)
+

3 a2−6 ε (a + t)6 ε

(1− 5 ε) (1− 3 ε)
− 6 a1−ε (a + t)1+ε

(1− 5 ε) (1− ε)
. (8)

For ε = 1/5 the solution is

Ea
4(t) =

3 (a + t)2

(1− 3 ε) (1− ε)
+ (a + t)6 ε

(
−3 a2−6 ε

1− 3 ε
+ 6 a1−3 ε ln(a)

)
− 6 a1−ε ln(a + t)

1− ε
. (9)

Note that lima→0+ Ea
2(t) = M2(t) and lima→0+ Ea

4(t) = M4(t), where M2n(t) are calculated

using the scaling function F(u), see Eqn. (1). In general, it can be shown, inductively, that

lima→0+ Ea
n(t) = Mn(t).

E. Other expected values

All the expected values that we need to calculate the correlation coefficients

can be obtained from equations (4), (5), (7), (8) and (9). Indeed, denoting

by EE2(t, τ, Ea(A), Ea(AX2
t )) the expression given by (4) for Ea(AX2

t+τ ) and by

EE3(t, τ, Ea(AXt), Ea(AX3
t )) the expression given by (5) for Ea(AX3

t+τ ), one has:

Ea
13(t, τ) = EE3(t, τ, Ea

2(t), Ea
4(t)) Ea

112(t, τ, ω) = EE2(t + τ, ω, Ea
2(t), Ea

13(t, τ))

Ea
22(t, τ) = EE2(t, τ, Ea

2(t), Ea
4(t)) Ea

121(t, τ, ω) = Ea
13(t, τ)

Ea
211(t, τ, ω) = Ea

22(t, τ) Ea
31(t, τ) = Ea

4(t)

Ea
1111(t, τ, ω, λ) = Ea

112(t, τ, ω) Ea
11(t, τ) = Ea

2(t)
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F. Computation of the auto-correlation functions

Assume t1 ≤ t2. We have to consider two cases, depending on the ordering of the values

{t1, t1 + τ, t2}, namely t1 ≤ t2 ≤ t1 + τ when the intervals overlap and t1 ≤ t1 + τ ≤ t2

when they are disjoint. We first outline the computation of the autocorrelation function

Aa
1(t1, t2; τ). If t1 ≤ t1 + τ ≤ t2,

Ea[(Xt1+τ −Xt1)(Xt2+τ −Xt2)] = Ea[Xt1+τXt2+τ ]− Ea[Xt1Xt2+τ ]− Ea[Xt1+τXt2 ] + Ea[Xt1Xt2 ]

= Ea[X2
t1+τ ]− Ea[X2

t1
]− Ea[X2

t1+τ ] + Ea[X2
t1
] = 0. (10)

The second equality follows from the martingale property. Consequently, Aa
1(t1, t2; τ) van-

ishes. A similar calculation for t1 ≤ t2 ≤ t1 + τ gives that

Aa
1(t1, t2; τ) =

Ea[X2
t1+τ ]− Ea[X2

t2
]√

Ea[X2
t1+τ ]− Ea[X2

t1 ]
√

Ea[X2
t2+τ ]− Ea[X2

t2 ]
.

Thus, Aa
1(t1, t2; τ) is 1 when t2 = t1, decreases to 0 as t2 increases to t1 + τ , and remains

there for t2 > t1 + τ .

Aa
2(t1, t2; τ) can also be calculated considering the overlapping and non-overlapping cases.

Introduce

Cova
2(t1, t2; τ) := Cov[(Xa

t1+τ −Xa
t1
)2, (Xa

t2+τ −Xa
t2
)2]

= E[(Xa
t+τ −Xa

t )2(Xa
t+2τ+ω −Xa

t+τ+ω)2]− E[(Xa
t+τ −Xa

t )2]E[(Xa
t+2τ+ω −Xa

t+τ+ω)2].

For disjoint time intervals, i.e. t1 < t1 + τ < t2 < t2 + τ , denote t1 = t and t2 = t + τ + ω

with ω > 0. The times are t1 = t < t + τ < t2 = t + τ + ω < t + 2τ + ω and therefore

Cova
2(t1, t2; τ) = Ea

22(t + τ, ω + τ) + Ea
22(t + τ, ω) − 2 Ea

211(t + τ, ω, τ) − 2 Ea
112(t, τ, ω +

τ)− 2 Ea
112(t, τ, ω) + 4 Ea

1111(t, τ, ω, τ) + Ea
22(t, ω + 2 τ) + Ea

22(t, ω + τ)− 2 Ea
211(t, ω + τ, τ)−

(−2 Ea
11(t, τ) + Ea

2(t) + Ea
2(t + τ)) (−2 Ea

11(ω + t + τ, τ) + Ea
2(ω + t + τ) + Ea

2(ω + t + 2 τ)) .

A similar expression can be derived for the case of overlapping intervals, t1 ≤ t2 ≤ t1 + τ .

In particular,

Var((Xa
t+τ −Xa

t )2) = Cova
2(t, t; τ).

The expression for Aa
2(t1, t2; τ) is complicated, but one can compute its behavior. It

begins at 1 when t2 = t1, decreases rapidly to a positive value as t2 increases to t1 + τ , and

then decreases very slowly as t2 grows further. If 1/3 > ε > 0, the asymptotic behavior is

Aa
2(t, t + T ; τ) ∼ CT ε−1 as T →∞.
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Indeed, the numerator of Aa
2(t, t + T ; τ) behaves as T ε−1 and its denominator converges to

a constant:

Cova
2(t, T ; τ) = Ct,τ ;ε,a [(a + T + τ)ε − (a + T )ε] = Ct,τ ;ε,a

(
ετT ε−1 + O(T ε−2)

)
lim
t→∞

Var((Xa
t+τ −Xa

t )2) =
2τ 2 (1− 3ε + 3ε2)

(1− ε)2(1− 3ε)

The value Ct,τ ;ε,a is a complicated expression that can be computed explicitly. For a = 0,

t > 0, it simplifies to

Ct,τ ;ε,0 =
2 (t2 − (t + τ)εt2−ε − τ 2)

(1− ε)2(1− 3ε)(t + τ)ε

The dashed line of Figure 1 shows the behavior of Aa
2(t, t+T ; τ) as a function of T for t =

10, ε = 0.1, τ = 1 and a = 0.001. The red dots are mean values from a series of 108 variable

diffusion stochastic trajectories starting from the origin at t = 0 with σ(x, t) = σ0(x, t) =√
1 + εx2

t
. As T → ∞, the autocorrelation function behaves like Aa

2(10, 10 + T ; 1) ∼ T ε−1,

in agreement with the derivation above.

Financial markets have been reported to exhibit volatility clustering [6]. We compute

autocorrelation functions for the Euro-Dollar exchange rates during 1999-2005 recorded in

1-min intervals. As shown in Ref. [13], mean intraday increments in this market are time

dependent, except in a time interval of approximately 500 minutes beginning at 20 hours

GMT. We, therefore, limit our analysis to this time interval. The autocorrelation function

for increments vanishes for T > 10 and, as shown in Figure 2, the autocorrelation function

A2(T0, T ; 10) exhibits a power-law decay, in qualitative agreement with the calculations

presented here.

III. CONCLUSIONS

Analyses of many financial instruments over the past decade [3–5, 9–12] have repeatedly

shown that increments of their return share two common anomalous characteristics: (1)

The distribution of increments over an interval τ scales in τ , but is either exponential or has

power-law tails. (2) The increments exhibit volatility clustering.

Using the Fokker-Planck formalism, it was previously shown that scaling distributions

with fat-tails can arise from variable diffusion processes [5]. These stochastic differential

equations have a diffusion coefficient that is a function of u = x/
√

t.

9



10010−1 102101 103
10−4

10−3

10−2

10−1

100

T

A 2
(1
0,
10
+T
;1
)

T!−1

FIG. 1: The autocorrelation function of squared increments. The blue dashed line denotes the

analytically derived autocorrelation function Aa
2(t, t + T ; τ) for t = 10, ε = 0.1, τ = 1 and a =

0.001. For T → ∞, Aa
2(t, t + T ; τ) decays like T ε−1 shown by the black line. Red dots represent

the corresponding autocorrelation function computed from a series of 108 stochastic trajectories

starting from the origin at t = 0 with σ0(x, t) =
√

1 + εx2

t . Error bars are negligible except at the

last two points.

In this paper, we introduced a method to calculate expected values and correlation co-

efficients of one of these variable diffusion process with σ2 = 1 + εx2/t. We showed that

the stochastic process exhibits clustering of volatility. Our results, coupled with the fact

that the corresponding scaling distribution has fat-tails, suggest that this variable diffusion

process may describe the dynamics of financial markets.
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FIG. 2: The decay of A2(T0, T ; τ) for the Euro-Dollar exchange rates during 1999-2005. These

calculations are conducted for a time interval of 500 minutes starting from 20 hours GMT, during

which time the mean increments are stationary. We have chosen T0 = 10 minutes and τ = 10

minutes. The errors bars are the standard errors for the ≈ 1750 trading days in the data set.
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