AN OPEN DENSE SET OF STABLY ERGODIC DIFFEOMORPHISMS
IN A NEIGHBORHOOD OF A NON-ERGODIC ONE

VIOREL NITICA  ANDREI TOROK

ABSTRACT. As a special case of our results we prove the following. Let A € Diff" (M) be
an Anosov diffeomorphism. Then there is a C"-neighborhood of A x Idg1 that contains an
open dense set of partially hyperbolic diffeomorphisms that have the accessibility property.
If, in addition, A preserves a smooth volume v and X is the Lebesgue measure on S, then
in a neighborhood of A x Idg1 in Diff2, (M x S1) there is an open dense set of (stably)
ergodic diffeomorphisms. Similar results are true for a neighborhood of the time-1 map of a
topologically transitive (respectively volume preserving) Anosov flow. These partially answer
a question posed by C. Pugh and M. Shub. We also describe an example of an accessible par-
tially hyperbolic diffeomorphism that is not topologically transitive. This answers a question
posed by M. Brin.

§1. INTRODUCTION

Let X be a compact smooth manifold without boundary endowed with a smooth volume
p- Denote by Diff"(X) the set of C"-diffeomorphisms of X, and by Diff},(X) the set of
volume preserving C"-diffeomorphisms of X. A diffeomorphism f € Diff},(X) is called
ergodic if for any measurable f-invariant set A C X either p(A) = 0 or u(X — A) = 0.
A diffeomorphism f € Diff},(X) is called stably ergodic if there is a neighborhood of f in
Diff], (X) consisting only of ergodic diffeomorphisms.

Remark. If no other mention is made, the notations C” and Diff" are used for the case
r > 1.

Classical results of Kolmogorov, Arnold and Moser show that stable ergodicity is not
always a generic property in Diff; (X). Indeed, by the KAM theory, near a non-degenerate
integrable Hamiltonian system there is a set of positive measure of invariant tori.

In contrast, Anosov showed in [A] that a volume preserving uniformly hyperbolic dif-
feomorphism is stably ergodic. Grayson, Pugh and Shub [GPS] found the first example
of a non-hyperbolic stably ergodic diffeomorphism, the time-1 map of the geodesic flow of
a surface S of constant negative curvature. Wilkinson [W] generalized this result to the
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2 VIOREL NITICA ANDREI TOROK

case when S has variable negative curvature. Pugh and Shub [PS1] later proved it for
higher dimensional manifolds of (almost) constant negative curvature. These results were
improved in [PS2].

Results about genericity of ergodic skew-products over Anosov diffeomorphisms with a
compact connected Lie group as fiber were found by Brin in [B]. These rely on earlier work
of Brin and Pesin [BP] about ergodic partially hyperbolic diffeomorphisms. Recently Burns
and Wilkinson [BW] proved results about the stable ergodicity of ergodic skew-products
with the fiber a compact connected Lie group.

Recall that a partially hyperbolic diffeomorphism has stable and unstable foliations,
W3 and W*. In addition, an r-normally hyperbolic diffeomorphism has also an invariant
center “leaf-immersion” with C" leaves, tangent to the center distribution. (For the precise
definitions see §2.) Given a partially hyperbolic diffeomorphism f € Diff(X), we say that
two points z, y € X are accessible (or, more precisely, (u, s)-accessible) if they can be joined
by a piecewise differentiable piecewise nonsingular path consisting of segments tangent to
either E™ or E®. (Essential) accessibility of f means that (almost) each pair of points
x,y € X is accessible. We say that a set A C X is accessible if any two points z,y € A
are accessible.

It was conjectured by C. Pugh and M. Shub that the set of stably ergodic diffeomor-
phisms is open and dense among the partially hyperbolic C? volume preserving diffeomor-
phisms of a compact manifold X. They conjectured also that stable accessibility is an open
and dense property among C? partially hyperbolic diffeomorphisms, volume preserving or
not. (Note that in both conjectures the openness follows from the definitions.)

Accessibility is relevant due to the following remarkable result of Pugh and Shub [PS2]:

Theorem 1.1. (Pugh, Shub) If f € Diffi (X) is a center bunched and dynamically coher-
ent partially hyperbolic diffeomorphism with the essential accessibility property then f is
ergodic.

This paper provides some evidence for a positive answer for the latter conjecture. Our
main result shows that in an open class of partially hyperbolic diffeomorphisms, there is
an open and dense set consisting of diffeomorphisms that have the accessibility property:

Theorem 1.2. In both Diff" (X) and Diff},(X) the stably accessible partially hyperbolic
diffeomorphisms form a C'-open and CT-dense set among those r-normally hyperbolic
diffeomorphisms with 1-dimensional center distribution that have two compact periodic
leaves whose Hausdorff distance is small enough. (By Theorem 6.1 of [HPS], the latter
condition is open in C".)

More precisely, we need the following (C"-open) conditions on the center leaves:

— there is a periodic compact 1-dimensional center leaf Cy, and

— each point of Cy is close enough to a periodic compact center leaf that is disjoint from
Co (by compactness, finitely many such leaves fulfill this condition for all the points of Cp ).

The precise meaning of “nearby” and “close enough” is given by Definition 2.1.

Theorem 1.2 follows from Theorems 3.2 and 3.3. In the former we exhibit a C''-open set
of partially hyperbolic diffeomorphism that are accessible. In the latter we show that some
partially hyperbolic diffeomorphisms can be made to belong to this set by an arbitrarily
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AN OPEN DENSE SET OF STABLY ERGODIC DIFFEOMORPHISMS 3

C"-small perturbation. If a smooth volume is given, the perturbation can be made volume
preserving.

In some cases the existence of periodic center leaves follows from the Poincaré Recurrence
Theorem and a Shadowing Lemma in [HPS]:

Lemma 1.3. Assume X is a compact manifold endowed with a probability measure p
that is positive on open sets. Let f € Diﬁ'i(X ) be a partially hyperbolic diffeomorphism
that is dynamically coherent and whose center lamination is plaque expansive. Then the
periodic center leaves of f are dense in X.

A proof of this fact will be sketched in Appendix 2.
Therefore, Theorems 1.1 and 1.2 imply that the set of stably ergodic partially hyperbolic
diffeomorphisms is open and dense in certain open sets of Diffi(X ):

Theorem 1.4. In Diffi(X ) the stably ergodic partially hyperbolic diffeomorphisms form
an open and dense set among those diffeomorphisms that are 2-normally hyperbolic, center
bunched, dynamically coherent, plaque expansive, with 1-dimensional center distribution,
and have compact center leaves. (By Theorem 6.1 of [HPS] and Proposition 2.3 of [PS1],
the latter set is open in C2.)

The main examples consist of time-1 maps of Anosov flows, and of Diff(S!)-valued
skew-products over Anosov diffeomorphisms:

Theorem 1.5. Let ¢; be the time-1 map of a C™ Anosov flow {¢:} of a compact manifold
M. Then the following are true:

(a) Assume that the flow {¢:} is topologically transitive. Then there is a C" -neighbor-
hood of ¢y in Diff" (M) that contains an open and dense set of diffeomorphisms
with the accessibility property.

(b) Assume that there is a {¢;}-invariant volume p on M. Then there is a C2-
neighborhood of ¢1 in Diffi(M) that contains an open and dense set of stably
ergodic diffeomorphisms.

Indeed, for time-1 maps of Anosov flows that are topologically transitive or volume
preserving, the compact center leaves (i.e., the closed trajectories of the flow) are dense.
This follows from Anosov’s Closing Lemma. Note that, in general, the time-1 map of an
Anosov flow is not accessible. For example, in the case of a suspension flow over an Anosov
diffeomorphism, the strong stable and strong unstable distributions are jointly integrable.

Theorem 1.6. Let A be a C" Anosov diffeomorphism of a compact manifold M and
B: M — Diff"(S') a C™ map (i.e., (x,y) € M x S — B(x)(y) € S is C"). Assume that

IT°Al| < inf m(Tp(z)), and sup [|TB(x)| < m(T"A). (1.1)
zeEM zEM

Let f: M x S* — M x St be given by the skew-product f(x,y) := (Ax, 3(z)(y)). Then the
following is true:

(a) There is a CT-neighborhood of f in Diff" (M x S) that contains an open and dense
set of diffeomorphisms with the accessibility property.
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4 VIOREL NITICA ANDREI TOROK

(b) Assume moreover that f is center bunched and there is a smooth f-invariant volume
p on M xS, Then there is a C?-neighborhood of f in Diffi(M x S1) that contains
an open and dense set of stably ergodic diffeomorphisms.

(The assumption (1.1) implies that the skew-product f is a partially hyperbolic diffeomor-
phism. For the definition of the conorm m(-) see §2.)

Corollary 1.7. Let v be a smooth volume form on M and X the Lebesque measure on S*.
If A € Diff2(M) is hyperbolic then in a C?-neighborhood of A x Idg: € Diff2_, (M x S")
there is an open dense set of ergodic diffeomorphisms.

A related question is the topological transitivity of partially hyperbolic diffeomorphisms.
Recall that a homeomorphism f of a topological space X is topologically transitive if for
some point z € X the orbit {f™(z) | n € Z} is dense. If X is a compact metrizable perfect
space then topological transitivity is equivalent to the existence of a point y € X whose
positive semi-orbit {f"(y) |n =0,1,2...} is dense (see Exercise 1.4.2 in [KH]).

A diffeomorphism of a compact Riemannian manifold that has an ergodic invariant
volume is topologically transitive. Therefore, by (b) of Theorem 1.6, there is an open and
dense set of transitive diffeomorphisms in a C2-neighborhood of A xIdg: in Diff2 (M x S?).

Brin proved in [B] that a partially hyperbolic diffeomorphism that has the accessibil-
ity property and is recurrent is also topologically transitive. He asked if accessibility of
a partially hyperbolic diffeomorphism is sufficient for topological transitivity. Our next
corollary answers this question in the negative due to the fact that, if A is an Anosov
diffeomorphism, the set of topologically transitive diffeomorphisms is not dense in any C*-
neighborhood of A x Idg:. We are grateful to K. Burns for pointing out this consequence
of our results and to the referee for suggesting that we state it in this generality.

Corollary 1.8. Let A be a C' Anosov diffeomorphism of a compact manifold M and R a
rotation of S*. Then there exists arbitrarily C'-close to A x R a C'-open set of partially
hyperbolic diffeomorphisms that are accessible, but not topologically transitive.

Proof. By (a) of Theorem 1.6 it is enough to find arbitrarily close to A x R an open set
of non-transitive diffeomorphisms.

For simplicity, we consider first the case R = Idg:. Pick ¢ € Diff’(S?) as close to Idg:
as desired such that ¢ has a fixed attracting point. Hence, there are open sets U,V C S*t,
0+£V & U such that ¢(U) C V. Let f:= Ax ¢. Then f(M xU) C M x V, and any
map that is C%-close to f has the same property. But such a transformation cannot be
topologically transitive because each positive semi-orbit has at most one element in the
open set (M x U)\ (M x V).

For the case of a arbitrary rotation, let R’ be a rational circle rotation close to R. There
exists a family of disjoint open intervals {I;}; such that U;I; # S and R'(I;) = I;;1, where
i € Z/(nZ) for some n. One can choose now arbitrarily close to R’ a circle diffeomorphism ¢
for which there exist n disjoint open intervals {J; }; such that () # J; & I; and ¢(I;) C Jig1.
Let f = Ax ¢. Then f(M x I;) C M x J;;1, and any map that is C%-close to f has the
same property. As above, such a map cannot be topologically transitive. [

On the other hand, Bonatti and Diaz [BN] proved, among other striking results, that
if M and N are compact boundaryless manifolds and A is a transitive C'*° Anosov dif-
feomorphism of M, then there is a C*®-arc F; € Diff*(M x N), t € [0,1], such that

Revised 7/99, Printed 8/30/1999
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Fy = A xIdy and there is a C'-neighborhood of {F}}ie(0,1] consisting of non-hyperbolic
transitive diffeomorphisms.

Let us also mention that according to [GPS], finding a C'-neighborhood of the time-1
map of the geodesic flow of a surface of constant negative curvature consisting of topolog-
ically transitive diffeomorphisms is an open question.

As we pointed out earlier, one can study accessibility and ergodicity in thinner classes of
transformations, e.g., skew-products over Anosov diffeomorphisms. The proof of Theorem
1.2 can be easily adapted to show that accessibility is generic in a class of Holder extensions
of Anosov diffeomorphisms (see Theorem 4.1). We also extend Brin genericity result
about topological transitivity to the class of Holder cocycles (Theorem 4.2). Note that the
corresponding result for ergodicity is proved in [FP]. We discuss these results in Appendix 1.
The existence of the stable and unstable foliations for such transformations does not follow
in a straightforward way from the general theory of partially hyperbolic diffeomorphisms,
so we prove their existence as well.

§2. DEFINITIONS

We recall first several standard facts about partially hyperbolic diffeomorphisms. Given
a linear transformation L between two normed linear spaces, the norm and the conorm of
L are defined by

IL|| == sup{|| Lol | o]l =1} and  m(L) := inf{[[Lo|| | ||v] = 1} = [|L7] "

Remark. In the sequel by a C”-lamination, r > 0, we mean a C°-foliation whose leaves
are immersed C"-submanifolds that vary continuously in the C"-topology. A foliation
stands for a C%-foliation.

Let X be a compact, connected, boundaryless manifold. Denote by T'X the tangent
bundle of X. A C'-diffecomorphism f : X — X is called partially hyperbolic if the derivative
Tf:TX — TX leaves invariant a continuous splitting TX = ES® E°d E", E° # 0 # E“,
such that, with respect to a fixed Riemannian metric on TX:

IT“f~ <1, [T°f] <1,
IT, fll <m(Tyf), T fll <m(T,f) forallpe X. (2.1)

(This is a slightly weaker condition than the one used in [PS2].) E*) E°¢ and E™ are called
the stable, center, respectively unstable distributions. If the center distribution E°¢ = 0,
then f is called an Anosov (or hyperbolic) diffeomorphism.

The distributions E® and E“ are tangent to unique Holder laminations W?* and W*
which have C! leaves. These are called the stable and unstable foliations. [To be precise,
we could call these laminations, but that is not the standard terminology.] If E* @ E°, E°,
and E€®E™ are also tangent to continuous foliations with C! leaves W, W€, respectively
Wwes, and if W€¢ and W* subfoliate W%, while W€ and W* subfoliate W¢*, then f is said
to be dynamically coherent.

Let f: X — X be a partially hyperbolic diffeomorphism. f is r-normally hyperbolic if
the center distribution E° is integrable to a C"-boundaryless leaf immersion (see [HPS],
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6 VIOREL NITICA ANDREI TOROK

§6) and
m(T2f) > |TEfIF,  ITEfIl < m(TEfF)F, k=0,...,rm

Roughly speaking, the center distribution integrates to a “lamination” that can have self-
intersections; its leaves are C". This set-up is necessary in order to assure that r-normal
hyperbolicity is a C'-open condition.

The center bolicity of f is the ratio
_ A
- m(Tef)
The map f is said to be center bunched if b is close to 1. More precisely (see §4 of [PS2];
our notation is different): let 0 < v,7, A < 1 be defined by v := min{m(T°f), | T°f||~'},
vi=min{m(Tsf), | T*f||71}, X := max{||T*f |, |T*f|]|} and set g := log, v > 1; then f
is center bunched if

b

logy 34+2¢—+/(34+2¢)2-8
< .
log A 4
In particular, v < XA < 7y and the spectra of T*f, T°f and T" f are contained in the annuli
corresponding to the intervals [v, A], [y,7!] respectively [A™!,»~!]. This is a stricter
condition that the “relative” partial hyperbolicity introduced in (2.1).

By Theorem 6.1 in [HPS], r-normal hyperbolicity is an open property in Diff" (X). The
property of being center bunched is preserved by C'-small perturbations. By Proposition
2.3 of [PS1], dynamical coherence is stable under C!-small perturbations, provided the
center lamination is plaque expansive. Plaque expansiveness is a technical condition on
an f-invariant lamination. Intuitively it means that separate leaves of the lamination
eventually diverge to a fixed distance under either forward or backward f-iterations (see
§7 of [HPS] or Appendix 2 for more details). For Anosov diffeomorphisms, i.e., when the
center lamination consists of points, this property reduces to expansivity. By Theorem 7.2
of [HPS], the center lamination is plaque expansive if it is a C'-foliation.

Definition. If F is a foliation of a Riemannian manifold M and F(z) is the leaf passing
through z € M, denote by Fs(x) the connected component of the intersection of F(z) and
the open ball of radius § around z.

The following local product structure property follows immediately from compactness
and transversality for any partially hyperbolic map that has the distributions E* @ E° and
E* @ E° tangent to the continuous foliation W and W with Cl-leaves:

There exist constants € > 0,6 > 0 and K > 1 such that for any z,y € X with
dist(z,y) < ¢, there is a unique point z; in W§(z) N W§*(y), and a unique point z2 in

Wi (x) N Wg*(y). Moreover:

max{dist(x, z1), dist(y, z1) } < K dist(z, y),
max{dist(x, z), dist(y, z2) } < K dist(z, y)
— the submanifold pairs W§*(z) and W§*(y), respectively W§*(y) and W§*(x), intersect
transversally;
— W (z) N W5 (x) = W (z) and W (y) N W (y) = W§(y).
By Theorem 6.1 of [HPS], the quantities ¢, § and K are lower-semicontinuous with respect
to the C'-topology on Diff' (X).
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AN OPEN DENSE SET OF STABLY ERGODIC DIFFEOMORPHISMS 7

Definition 2.1. Two neutral leaves Cy,C; are called nearby if the Hausdorft distance
between them is smaller than ' = §'(f) := ¢/(5K?3).
A point z € X is close enough to a center leaf C if dist(x,C) < §’.

Definition 2.2. Given a center leaf C° and points z, € C°, Z € X such that dist(z,,Z) <
&', we define the holonomy H,, z : C3 (z«) — C° by H,, z(z¢) = x4, where 2o € C§ (z.)
and x4 is constructed as follows:

z1 :=W5(z0) N W5*(Z),
o =W§L($1) N Wgs(f) C Wgt(xl) NC y
I3 :W§($2) N Wgu(.’li()),

) (

If necessary, we will refer to the points x; in the above construction by Hg(gk)i (z0), 1 <k <
4. Here C' is the center leaf containing Z. The choice of §’ assures that the intersections
defining x4, ..., x4 have exactly one element.

Note that the pair (xg,z4) is (u, s)-accessible.

Remark 2.3. Assume that in the above definition C° is connected and one-dimensional,
and z¢ # z4. Then there is an open neighborhood of z in C whose points are accessible
from zy.

Indeed, by choosing a small continuous path x5(¢), t € [0,1] that connects zo = 22(0)
to £o = x2(1) and constructing the (u, s)-loops given by Hy, .. (o), t € [0,1], we can
access from x( at least a closed interval I of C° ending at xo. Since the foliations W?* and
W* are continuous, there is a very short (u, s) loop starting from a point zj € C° close to
xo but outside I and ending in I. Contract this loop to z{, with the same procedure as
above to cover the half-neighborhood of zy not contained in I.

§3. PROOF OF THE MAIN RESULTS

Remark. By a C*-small diffeomorphism we mean a diffeomorphism that is C*-close to
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8 VIOREL NITICA ANDREI TOROK

the identity. The support of a diffeomorphism f : X — X is the closure of the set
{zeX|f(z) #x}.

Lemma  3.1. Assume that f is a normally hyperbolic diffeomorphism of a compact
manifold X (hence, its center distribution is integrable). Then, given any point x € X and
any center leaf C, x can be (u, s)-connected to C.

In particular, if f has a center leaf Cy such that any two points of Cy are accessible, then
the whole manifold is accessible.

Proof. Denote by C, the set of center leaves that can be accessed from z, and let D, be
the set of points in X that lie on one of the center leafs in C,. We will show that D, is
both open and closed, hence it is equal to X.

Openness follows from local product structure property. To show that it is also closed,
let C ¢ C;. Then, again by the local product structure, there is an e-neighborhood of C
that does not intersect D,. This shows that the complement of D, is open.

For the last statement, notice that given z,y € X there are x’, 4y’ € Cg such that the pairs
(z,z') and (y,y’) are accessible. By the hypothesis, the pair (z’,y’) is also accessible. [

Theorem 3.2. Let f be a 1-normally hyperbolic diffeomorphism whose central leaves are
1-dimensional. Let Cy be a compact periodic central leaf of f, fP(Co) = Co. Set F' = fP.
Assume that:

(1) F [¢, has rational rotation number;

(2) all periodic points of F' |¢c, are transverse (hence finitely many only; denote them
by yi,i=1,...,K);

(3) there are points y; close to y; (i.e., dist(y;,5:) < 6'(f)) such that

Hy, 5,(ys) # i, forall i=1,... K.

Then any two points of Cy are (u, s)-accessible. Hence, by Lemma 3.1, f is accessible.

Remark. Condition (3) can be replaced by the fact that the local (u, s)-holonomy is non-
trivial at each point y;: there is a point y; € Co, y; # yi, which is (u, s)-accessible from y;
through a path that is null-homotopic (mod Cp).

Proof. If the map f satisfies (3), then it follows from Remark 2.3 that there are open
connected neighborhoods U; C Cy of the points y;’s such that each U; is accessible. Denote
u = U?:]_UZ.

Since the periodic points of F' ¢, are transverse, there is a positive integer ko such that:

Uk FYU) = Co.

i=—ko

Because the stable and unstable foliations are invariant under f, it follows that if a set
A is accessible then the set f(A) is accessible as well. Moreover, if the sets A and B are
accessible and AN B # (), then AU B is accessible. Therefore Cy is accessible. [

The properties (1), (2) and (3) that appear in the statement of Theorem 3.2 are stable
under small C! perturbations, hence, in order to prove Theorem 1.2 it is enough to show
the following:
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Theorem 3.3. Fixr > 1. Let f be an r-normally hyperbolic diffeomorphism with 1-
dimensional center distribution that has two nearby compact periodic center leaves. Then
there are arbitrarily C"-small diffeomorphisms g € Dift" (X) such that g o f satisfies the
conditions of Theorem 3.2. If a smooth volume form p is given, one can choose g to
preserve [i.

More precisely, we need the following conditions on the center leaves of f:

— there is a periodic compact 1-dimensional center leaf Cy, and

— each point of Cy is close enough to a periodic compact center leaf that is disjoint from
Co (by compactness, finitely many such leaves fulfill this condition for all the points of Cy ).

We prove Theorem 3.3 after a few preliminary lemmas. We will assume that a smooth
volume form p is given. The strategy is as follows: we do all the perturbations by compos-
ing the original map by time-f maps of certain volume preserving C"-flows. These flows
are constructed in Lemma 3.4. The effect of these perturbations on the center leaves is
discussed in Lemma 3.5. Lemmas 3.6 and 3.7 show how to obtain conditions (1) and (2)
of the Theorem 3.2. After presenting these Lemmas we describe the remaining part of the
proof.

Lemma 3.4. Let M be a C*° manifold and p a smooth volume form on M. Assume
N C M is a compact C" submanifold of codimension at least one, possible with boundary
ON. Let U be an open neighborhood of N.

Let X be a C"~! vector field on N which vanishes in a neighborhood of ON. Fizx an
open set 8 C N such that supp(X) C Q C Q C N\ ON and a neighborhood V of X in
XT7Y(N), the space of C™™! vector fields on N.

Then there is a continuous path of volume preserving diffeomorphisms ¢ : R — Diﬁ‘; (M)
given by a non-autonomous flow, such that:

- ¢0 - IdM;
— supp(¢p¢) CU and ¢s(N) = N fort € R;

d
- Xo IN€V and supp(Xp [n) C Q, where Xg := E(bt le=0-

Remark. In some cases (e.g., in the situation described by Corollary 1.7), we can realize
¢ as the flow of an autonomous vector field.

Proof. Denote dim(/N) = n and dim(M) = m. For convenience we assume that M is
endowed with a smooth metric.

Due to the boundary of N, we have to consider open half-balls as well, i.e. sets {x =
(Z1,..,2n) € R | ||Ix|| < 7,21 > 0}

Choose a finite cover of N by balls {U,} in M such that U, N N are open (half-) balls,
U, C U/, and ¥/, : U/, — V! C R™ are smooth coordinate maps of M. By applying the
Theorem of Moser, [M], to the compactification of x.,(U}) we may assume that (x,,), p is
the Lebesgue measure on V, := x/, (U,). After refining the original cover and composing
the x!,’s by volume preserving affine transformations, we may assume that for each «
the set x.,(N NU,) is given in R™ by the graph of a C” function f, : D, — B, where
D!, c D, CcR* B, C R™ ™, D, and B, are open balls, D/, is either D, or a half-ball
of it, and D, x B, C x,(UNUy,). Compose further x/, by the volume preserving C"-map
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(2,y) € Do X By +— (z,y — f(z)) € R* x R"™" where f : Dy — B, is a C"-extension of
f- We conclude the following:
There is € > 0 and a finite collection of C” coordinate maps x : U, — V, of M such
that:
- N CUU,s CU;
~ (Xa), i is the Lebesgue measure on xo(U,) C R™;
— Xa(NNUy,) = D, x {0} C Dy x Balll> " ™(0) C xa(Uy) C R™ with D, C R* an
open ball, where D/, is equal to either D, or a half-ball of it.
Choose on M a smooth partition of the unity {1} subordinated to {U,} and let X, :=
P X € X"H(N), vq := (Xa), (Xo)- Then v, € X""1(D,) because X vanished near ON.
By standard approximation arguments (see, e.g., [H]), one can find C” vector fields v, €
X" (Dg) such that supp(v,) is compact in D/, > x&(Ua) € V and supp(>_,, x5 (Va)) C Q2.
We extend each v, to a gradient-free compactly supported vector field w, € X" (D, X
Ball?*"™(0)) as follows: denote the coordinates of R™ by zi,...,z,, those of R™™™ by
Yl,-- > Ym—n, and the components of v, by v.,...,9%. Define

wa(xa y) = (¢(y1) : 50(37)’ Y(;L‘,y), 0,.. "0) ’

where
- Y € C((—¢,¢), R);
— 0)—1

/ P(s)ds = 0;
Vaw)=-Y s [T u s

Let ¢ : R — Diff{ o, (xa(Ua)) be the flow generated by w,. Then ¢ : R — Diff], (M)

given by
¢ =[] (xa" © 6§ © Xa)

«

satisfies the conditions of the Lemma (for the above composition fix any order of the
indexes ). O

Lemma 3.5. Let f be an r-normally hyperbolic diffeomorphism on the compact manifold
X and Cy be a center leaf of f. If g € Diff"(X) is C'-close to f and f™(Co) = g™(Co) for
all n € Z then Cy is a center leaf of g as well.

Proof. This follows from the characterization of the center leafs of g given in Theorem
6.8 of [HPS]: it roughly says that to each center leaf C of f there corresponds a center leaf
C' of g, uniquely determined by the fact that f™(C) and ¢g™(C’) stay close to each other for
alln € Z. U

We say that the rotation number of a diffeomorphism ¢ € Diff'(S') is stable if all
diffeomorphisms C*-close to ¢ have the same rotation number.
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Lemma 3.6. Let X be a compact manifold with a smooth volume p. Given any r-
normally hyperbolic map f € Diff"(X) with a p-periodic 1-dimensional compact center
leaf Co, fP(Co) = Co, there are arbitrarily small diffeomorphisms g € Diff} (X) such that
9(Co) = Co, Cy is a p-periodic center leaf of go f and the rotation number of (go f)P on Cy
1s rational and stable.

Proof. Fix a C"-diffeomorphism ® : S — Cy and pick a tubular neighborhood U of C
such that U does not intersect {f*(Co) | k=1,...,p— 1}.

In view of Lemma 3.5, if g € Diff},(X) is small enough, g(Co) = Cy and supp(g) C U
then Cy is a center leaf of g o f (and, obviously, p-periodic).

Notice first that if fP | Cy has irrational rotation number then by an arbitrarily small
C"-perturbation g as above we can achieve that (g o f)? have rational rotation number
on Cy. Indeed, by Lemma 3.4, there is a volume preserving C"-flow {¢;} supported in U
and preserving Cy with the property that it does not have any fixed point on Cy. Then
for small ¢ the circle diffeomorphisms ®~1(¢; o f)P® and &1 fP® are ordered in the sense
that their “compatible” lifts to R do not intersect (see [KH], Definition 11.1.7; note that
&1(¢p; 0 f)PD = & 1(¢; o fP)®). Therefore, by Proposition 11.1.8 of [KH],

p(@7 (¢ 0 [)PD) # p(@71f7D)

for any small ¢ # 0. In particular, the rotation number has to take rational values for
arbitrarily small values of ¢ # 0.

It remains to show that the rational rotation number can be made stable. Assume that
p(F) = po, with pg € Q, where F := ®~1(¢; o f)P®. If F is not a rotation then it has at
least one semistable periodic point, hence “pushing” ¢; o f in the right direction with a
flow around Cy produces a stable periodic point (see Proposition 11.1.10 in [KH]).

If F is a rotation, let (z4,y.) be an interval of S 1 that contains no element of the F-
orbit of z,. Take a flow {15} preserving Cq such that () # supp(¢s [¢,) C (Z«, yx). Then
(150 ¢z o f)P has rotation number pg but is not a rotation, hence we can apply the previous
argument. [

Lemma 3.7. Let f € Dift"(X) be an r-normally hyperbolic diffeomorphism that has a
p-periodic 1-dimensional compact leaf Cy. Assume that fP [c, has stable rational rotation
number po. Then there are arbitrarily small diffeomorphisms g € Diff;(X ), such that Cy
is a p-periodic leaf of go f, and (g o f)P [c, has rotation number py and only transverse
periodic points.

Proof. Fix a tubular neighborhood U of Cy such that U does not intersect {f*(Co) | k =
1,...,p—1}. Use Lemma 3.4 to construct a volume preserving flow {¢;} that preserves Cy,
is supported in U, and is nonsingular for |t| < e. We will obtain the desired perturbation
by considering ¢; o f for small values of ¢.

In view of Lemma 3.5 and our hypothesis, the only part of the conclusion that has to
be checked is that one can make all periodic points of (¢t o f)P [¢, transverse. For this we
use the following consequence of Sard’s Theorem (see [H], Theorem 2.7):
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Parametric Transversality Theorem. Let V, M, N be C"-manifolds without boundary
and A C N a C"-submanifold. Let F : V. — C" (M, N) be a map that satisfies the following
conditions:

(i) the evaluation map F' : V x M — N, (v,z) — F,(z) = F(v,z) is C";
(ii) F©? is transversal to A;
(iii) 7 > max{0,dim M + dim A — dim N}.

Then the set Trans(F; A) ={v € V | F, is transversal to A} is dense.

We identify Cy with S, but for simplicity do not write this identification explicitly.
Assume that f? [¢, has a periodic point of period gq.
Let M =Cop, N =Cy x Cy, A={(z,2) |z € Cp}, V= (—¢,¢) and

F(t) = [z e M — (z,(¢e0 fF)(2)) € N]

(note that (¢ o f)P [co= (d¢ © fP) Ico)-

Condition (i) is obvious and condition (iii) holds for » > 0. Note that ¢; is a diffeomor-
phism for any ¢ and coincides with the identity for ¢ = 0, hence the derivative D, (¢: [¢,) is
positive for t € (—¢,¢). A straightforward computation shows that %(gbt o fP)4 [,# 0 for
any t € V and x € Cy, because the partial derivative is the sum of ¢ terms, each having the
same sign as the vector field. Hence the vector %F ¢¥ and the tangent space of A span the
tangent space of N at each point in the intersection of the image of F'*¥ with A. Therefore
condition (ii) is true as well. It follows from the Transversality Theorem that there are
values of t € (—¢,¢) arbitrarily close to zero for which (¢; o f)P [¢, has only transverse
periodic points. [

The last ingredient is provided by the following:

Lemma 3.8. Let f € Diff" (X) be a partially hyperbolic diffeomorphism as in Theorem 3.3,
having two disjoint periodic compact center leaves Cy and Cy of period dividing p. Let K
be a compact subset of X that is f-invariant and does not intersect either Cy or C1. Given
two close enough points x, € Co, T € C1, there is an arbitrarily C"-small diffeomorphism
g€ DiffL(X) such that f :=go f has Cy and C; as periodic center leaves, fP [¢c,= f? [c,,
fP k= f? Ik and N

Hy, 5(y«) # Hy. 5(ys);

where Hy,_ 5 is the f-holonomy and H .,g s the f-holonomy.

Remark. In our case K will consist of the f-trajectories of a finite number of periodic
compact center leaves. By Lemma 3.5, center leaves of f that are contained in K remain
center leaves for f as well.

Proof. Let Hy, 5 :V — Cg be the f-holonomy, where V' is an open subset of Cy containing
ys. Given y € V, denote y*) := Hék?g(y) for 1 < k < 4 (recall the notations introduced
in Definition 2.2). Let N := {y® |y € V} C WC"(y£4)) N Wcs(y£2)) and N* := f=F(N).
Note that y£3) € N and by transversality N is a C"-manifold.
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Since N™ approaches Cy as n — o0, there is a positive multiple ¢ of p such that
NINK =0 and

NinffWes(C) =0 for £=0,1,...,p—1,
and thus for all £ > 0, because fP(W§*(C1)) C W§*(C1). Moreover, for k,£ € Z,
NEOFAWE(Co) =0,  NFn fAW§(C)) =0,

as one can see by considering the w-, respectively a-limit sets under fP?.

() is backward asymptotic to the f-orbit of Cy, we may shrink V' (and thus N)

Since 5
so that

NfEANI=( for k>0, k+#q.

Then there is an open neighborhood U of N9 which is disjoint from K, N* for k > 0,
k#q, and fEWE (o)), FAWE (1)), FEWE(Ch)), for £=0,...,p— 1.

Let g € Diff” (X) be a small diffeomorphism such that g(N?) = N and supp(g) C U.
Let f = go f and denote the stable and unstable foliations of f by WS respectively we.

By Lemma 3.5, Cy and C; are center leafs of f as well, hence we can consider the f
holonomy H, .y V = Co. Note that N™? C Weu(Co) N We(Co) for all n > 0, because
N™ is backward asymptotic to Cy under both fp and fP.

The desired conclusion is a consequence of the following formula describing how the
holonomy changes:

Hy 5=fl0®0g 'o®  of 9 H, (3.1)
where ® : N4 — f~9(H,, 5(V)) C Cp is the holonomy along the unstable foliation of f
within We*(Cy).

Indeed, pick y € V and let g*) := H,, Ak ) g(y) for 1 <k <4 (the notations correspond to
those of Definition 2.2, applied for f ) Slnce f™ coincides with f on WCS( ) and Wg* (y?)
for all n > 0, W (y) = W (y) and W3 (y®) = W(y®). Similarly, Wg(y®) = Wg(y®@).
We conclude that §(*) = y®) for ye V and 1 < k < 3.

It remains to consider the transition from N to Cy. Denote by H, respectively H the
holonomy from N to Cy along W* within W (Cy), respectively along W within Wev (Co).
The functions f~™ and f_"i” coincide on N?7P for all n > 0, therefore the holonomy ®q
along the unstable leaves from N91P to Cy is the same for both f and f (recall that the
points of the local unstable leaf of z € X are characterized by the fact their backward

trajectory does not stray away from that of ). By the invariance of the unstable foliations
we obtain that

fIP o dg = Ho fIP,  respectively fi1P o dg = H o fI1P,

both relations being considered on N2P, Since fq+p [nvatr= f20go fP [netp, We Obtain
that N
H |n= fq+po(I)Oof_pog_lofpoq)o_lof_q_poH [N
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14 VIOREL NITICA ANDREI TOROK

By the same invariance, f? o &g o f~P = &, which implies (3.1).
By Lemma 3.4, there is a flow ¢; € Diff},(X) that is supported in U, preserves N? and

does not fix the point &1 o f~¢ (y£4)) for small t # 0. Therefore, there is ¢ty > 0 such that

Hy, 5(ys) # Hy. 5(y),
provided g = ¢ and 0 < [t| < tp. O

Proof of Theorem 3.3. Let f € Diff" (X) be as given in the theorem, with Cy a compact
periodic center leaf.

By the Lemmas 3.6 and 3.7, we can find arbitrarily small diffeomorphisms g € Diff}, (X)
such that g o f satisfies conditions (1) and (2) of Theorem 3.2. Thus, we may assume
without loss of generality that f itself satisfies conditions (1) and (2). We will construct a
small perturbation f of f which induces on Cy the same map as f and satisfies condition
(3) as well.

Let py be the period of Cy. Denote by y;, 1 < i+ < K, the periodic points of fPo
on Cy. Let y; be points close enough to y; situated on periodic compact leaves C; and
H,; .= Hy, 3, : Vi = Cy the corresponding f-holonomies (we are not going to write explicitly
the dependence of the holonomy on the function unless it is not clear from the context).
We label the points y; as “bad” or “good”, depending on whether they satisfy condition

(3):
B:={y; | Hi(y;) = y:,1 <i< K}, G:={yi| Hi(yi) # 4,1 <i < K},

We use Lemma 3.8 to do successive perturbations which move points from B to G.
During these perturbations Cy and C; remain periodic center leaves and fP° [, is not
affected, hence the set of periodic points on Cy does not change and conditions (1) and (2)
are still fulfilled. Due to the continuity of the stable and unstable foliations with respect
to changes in the diffeomorphism, small perturbations will never take a point from G to B.
Therefore, after a finite number of perturbations all points y; will be in G, as desired. [

§4. APPENDIX 1

Let M and N be compact manifolds.
Consider on Homeo(N) the distance dn (g, k) := sup,¢ distn(9(y), h(y)), where g, h €
Homeo(N). It has the following properties: if g, h,u,v € Homeo(N) then

dN(gU, hu) = dN(ga h)a
dN(u.g’U'h) S ||’U'||LipdN(ga h’)7

hence
dN(gha UU) S dN(gha U’h) + dN(Uha UU) S dN(g’ u’) + ||u||LipdN(ha U); (41)

dy(g7 'Y =dn(g7'h, k7 h) = dn (g Thog7 ') < |lg HlLipdn (g, h).  (4.2)
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Fix a C! Anosov diffeomorphism A : M — M. There is A € (0,1), and a splitting
TM = E° & E" such that with respect to an adapted Riemannian metric on M

1T Av|| < Allofl, v e E?,
ITA™ | < Alloll, v e E™

Definition. A map §:7Z x M — Diff'(N) is called a cocycle over A if it satisfies
B(m + n,x) = f(m, A"x) o B(n, x) (4.3)

for m,n € Z, and x € M.
Given 0 € (0, 1], the cocycle 3 is said to be 0-Hélder if there is a constant Cy > 0 such
that

dn(6(1,2),8(1,y)) < Cg distM(:E,y)g r,y € M, (4.4)

The smallest value Cy that can be used in the above formula is called the §-Hélder (semi)
norm of 3, denoted by ||B(1, -)||e-
The cocycle (3 is said to be 0-close to the identity if

ITB(1, - )FH|A% < 1. (4.5)

In view of (4.2), the conditions (4.4) and (4.5) imply that 3(1, -)~! is §-Holder as well,
1B, )~ Hle < ANIB(L, -)lls-
A cocycle 3 : Z x M — Diff'(N) determines a skew-product fg: M x N — M x N
given by
fa(2,y) = (Az, B(1, 2)(y))-

For 0 < 6 < 1,0 < H < oo denote by Skg (A, N) the set of skew-products over A
given by cocycles 3 : Z x M — Diff' (N) that are §-Holder for some 6 € (0,1] and satisfy
181, Hlle < H, |TB(1, )TN < §. It follows from formula (4.3) that a cocycle 3 is
determined by the map 3(1, - ) : M — Diff' (), hence we can see Skz 5(A, N) as a subset
of Maps(M, Diff'(N)). Endow the space of maps from M to Diff'(N) with the topology
of uniform convergence and consider on Skg 5(A, N) the induced topology.

For maps in Skg s(A, N) one can construct the equivalent of the stable and unstable
foliations of partially hyperbolic C'-maps. Since the existence of these foliations for Holder
skew-products does not follow from the standard theory of partially hyperbolic diffeomor-
phisms, we include a proof of this fact in Theorem 4.3. Using these foliations, one can
speak of accessibility. The stable and unstable foliations of the skew-product are contract-
ing, respectively expanding, and the leaves of the foliations depend continuously on the
cocycle 3. Therefore, the proof of Theorem 1.2 can be applied to yield:

Theorem 4.1. In Sky s(A, S') the accessible maps contain an open and dense set. O

Another motivation for Theorem 4.3 is a generalization of a result of Brin (see [B])
about topologically transitive C? skew-products. Indeed, if G is a compact connected Lie
group, then the set of translations by elements in G' can be embedded in Diff' (G) as Haar
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measure preserving transformations. Denote by Sk¢ (A) the set of skew-products fz over
A given by Hélder cocycles 8 : Z x M — G. Note that any element fg in Sk%(A) belongs
to Skg,5(A, G), for some H, 6. Denote Sk§ 5(A) = Sk s(A, G) NSk (A). Any element in
Sk% s(A) has stable and unstable foliations satisfying all the properties in Theorem 4.3.
Usin,g this fact, one can follow [B] to prove:

Theorem 4.2. Let A: M — M be a topologically transitive C* Anosov diffeomorphism
and G a compact connected Lie group. Then Skg’5(A) contains an open dense set of
topologically transitive transformations. [

Indeed, according to [B], one has to check that a generic map is recurrent, and has the
accessibility property. Since A is topologically transitive, it has a dense set of periodic
points. From this follows that any skew-product in Skf[,(; (A) is recurrent. Generic acces-
sibility can be proved as in [B], using the properties of the stable and unstable foliations
listed in Theorem 4.3.

We will discuss in Theorem 4.3 the stable foliation only; for the unstable foliation
consider f~! instead of f. In order to simplify the notation, denote 3(1,z) by B(z). In
the sequel W# stands for the stable foliation of the Anosov diffeomorphism A : M — M
and dist, for the distance induced by the metric of M on a leaf of W5.

Theorem 4.3. Let A: M — M be the C' Anosov diffeomorphism considered above
and B : 7 x M — Diff'(N) a 0-Hélder cocycle which is 0-close to the identity. Define
Yom : W (z) — Diff'(N) C Homeo(N) by

Yz.n(t) = B(n, t)_lﬂ(n, x).

Then:
(a) The sequence {Yz,n}n>0 is pointwise convergent in Homeo(NV).
(b) The limit
Yz = lim 74, : W*(z) — Homeo(N)

n—o0
18 uniformly 0-Holder from distg to dy.
(©) (@) = ldy.
(d) The family of graphs W*(z,y) := {(t,v:(t)y) | t € W*(x)}, z € M,y € N, gives
an f-invariant foliation of M x N, where f € Homeo(M x N) is the skew-product

f(@,y) = (Az, B(z)y), we€M,yeN.
(e) Ift € W3(z) and v > \° then

lim ™" distarx v (f" (€, ), £ (¢, 72() (y)) = 0,

n—00

uniformly in (x,y) € M x N and {t € W*(x) | dists(x,t) < K}, for any K > 0.
(f) The family of maps {7y, : W*(z) — Homeo(N) | z € M} is uniquely determined by
either of the following conditions:

(i) properties (b), (¢) and (d);
(ii) property (e) for a value v satisfying \ < v <m(TB) = || T8 ||
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(g) The application
B: M — lefl(N) € {ﬁ ‘ fﬁ S SkH’(;(fl7 N)} — {fya; . WS(:E) _ Homeo(N)}meM

constructed in (a) is continuous from the topology of uniform convergence of maps
from M to Homeo(N) to the topology of uniform convergence on compact sets of
maps from the leafs of W* to Homeo(N).

Proof. We will use (4.1) repeatedly to estimate the distance between two products in
Homeo(N).
Recall (see [P]) that there is a constant Cs > 1 such that

dist, (A™z, A™t) < C, A" dist, (2, 1) (4.6)

forn >0 and t € W*(x).
(a) It is enough to show that the sequence {7, (t)}n is Cauchy. Let m > n be positive
integers.

dN('Yz,n(t)a’Ya:,m(t))
= du(B) o+ 0 HA ) o f(A") Vo -0 H(A™ L) L 0 (m, ),
Bt) o0 BAMTH) o f(A™) T o0 BA™TH) T 0 f(m, 7))

< 2_3 1B(t) ™ o -0 BAFT ) T |Lipdn (B(AR2) T, B(AR) )
k=n

< Ci||TB7H|m A dist (x, t)?, (4.7)

where

B e
“ =TT O

(b) Let s,t € W#(x), and n be a positive integer. Then:

dN(’Yw,n(S)a'Yz,n(t))
=dn(B(s) o 0 B(A" T s) T B(n, 2), B(t) T o -0 B(A™TH) T B(n, x))

n—1
< Cy ) |ITB I AR dists (s, 1) < Csdists(s, 1)°,
k=0

where the constants Cy, C'5 are independent of s,t,m,n,x, 5.
(c) This is obvious.
(d) The invariance is equivalent to

B, 1)va(t) = vanz (A1) B(n, ),  t € W*(z)

and this follows from the identity

/B(n, t)’Yw,m(t) = YArz,m—n (Ant)/@(na .’17)
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(e) One has:

f*(z,y) = (A"z, B(n, z)(y)),
7)) = (A", B(n, 1)v2(t)(y)).

In view of (4.6) it only remains to prove that

lim v~ "dn(B(n,x), B(n,t)v:(t)) = 0.

n—oo

By (d), (c) and (b)

dn(B(n, z), B(n,t)7:(t)) = dn(B(n, ), yans (A"t)B(n, T))
= dy(Idy, yarg (A™)) < CsA™ disty(z, t)°.

(f) Let {w, : W*(z) — Homeo(N) | z € M} be another family of functions.
(i) Assume that {w,} satisfies (b), (c) and (d). From (d) we conclude that w,(t) =
B(n,t) twang (A™)B(n, ), t € W*(x). But then, using also (c) and (b):

AN (Wz (), Ven(t) = dn(B(n, 1) wang (A") B(n, x), B(n, t) "' B(n, z))
< (18, 1) " llLipdn (Wana (A1), Idw) < Cul| TS| A" dists (2, 1),

which implies the desired conclusion.
(ii) Assume that {w,} satisfies (e). Then

nli_)rglo v "dn(B(n, 2)yz(t), B(n,)wz(t)) =0 for te W?(z).
But
v AN (B(n, 2)7:(1), B(n, ws () = v |B(n, 2) I dv (10 (1), wa (1)),

and the right-hand side converges to zero for A’ < v < ||[TB7Y|~! if and only if
dy(72(t), ws(t)) = 0.

(g) This is a consequence of the fact that the application [+ 7, is the “uniform limit
of a sequence of continuous functions”.

Indeed, let B and B’ be two cocycles whose skew-products are in Skg 5(A, N). Denote
by Yz,n, Yz and 7y ,, v, the corresponding families considered in (a).

Let t € W*9(x). The estimate (4.7) implies that

HX!
1-6

dn(Vz,n(t),12(t) < Cs6™ max{dists(t, z), 1},

and a similar inequality for v, , and 7,. On the other hand, in view of (4.1), for a fixed n
one can make dy (Vzn(t),Vz,n(t)) as small as desired by taking 8 and 3’ close enough to
each other. [
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§5. APPENDIX 2
We prove here Lemma 1.3. Recall its statement:

Lemma 1.3. Assume X is a compact manifold endowed with a probability measure p that
18 positive on open sets. Let f € Diff}L(X ) be a partially hyperbolic diffeomorphism that is
dynamically coherent and whose center lamination is plaque expansive. Then the periodic
center leaves of f are dense in X.

For the sake of completeness we recall a few definitions from [HPS], §7.

Let C be a C'-lamination of X with leaves of dimension c. A plaque is a C*-embedding
p: By — X of the closed unit ball B; C R® into one of the leaves of C. A plaquation P is
a family {p} of plaques such that each leaf of C is the union of the images of the interior
of B; through some plaques and {p} is precompact in Emb'(B;, X). By Theorem 6.2 of
[HPS], each C'-lamination admits a plaquation.

Let f be a diffeomorphism that preserves C. A pseudo orbit {z, },ez preserves P if for
each n, f(z,) and x,41 lie in a common plaque of P.

The diffeomorphism f is plaque expansive if there is an € > 0 such that if two e-pseudo
orbits {p,} and {¢,} both respect P and satisfy distx (pn,qn) < € for all n then for each
n, p, and ¢, lie in a common plaque of P.

We will use the following Shadowing Lemma ([HPS], Lemma 7A.2 and its proof):

Lemma 5.1. (Hirsch, Pugh, Shub) Assume that the center distribution of the partially
hyperbolic diffeomorphism f € Diff'(X) integrates to a C'-lamination C of X. If (f,C)
has local product structure and v,n > 0 are given, then there exists 6 > 0 such that any
0-pseudo orbit for f can be v-shadowed by an n-pseudo orbit for f which respects C. [

Dynamical coherence of f implies that (f,C) has local product structure (see §7A of
[HPS] for the definition of the latter).

Proof of Lemma 1.3. Let € be the constant given by the plaque expansivity of W¢. Pick
0<v<eg/2,n=¢€and let 0 < be given by Lemma 5.1.

Let B C X be an open set of diameter at most 6. By the Poincaré Recurrence The-
orem, there exists N > 1 such that BN fV(B) # (), hence there is x € B such that
distx (x, f¥(z)) < §. Consider the N-periodic -pseudo orbit,

...,fN_l(x),x,f(x),f2(x),...,fN_l(a:),ac,f(a:),f2(a:),...

and let {y,} be the n-pseudo orbit that v-shadows it and respects W¢.

Since the n-pseudo orbits {y,} and {z,}, zn := yntn, satisfy distx (yn, 2,) < 2v for all
n and both respect W€, the plaque expansivity of W€ implies that y,, and z, = yn4n lie in
the same leaf of W¢. But {y,} respects W¢, hence f¥(y,) and y,,n also lie in the same
leaf of W¢. Therefore, ,, and f(y,) lie in the same center leaf; we obtain an N-periodic
center leaf at a distance at most v from B. [
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