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Abstract. We prove certain rigidity properties of higher-rank abelian product actions of the
typeα × IdN : Z

κ → Diff (M × N), whereα is (TNS) (i.e. is hyperbolic and has some
special structure of its stable distributions). Together with a result about product actions
of property(T ) groups, this implies the local rigidity of higher-rank lattice actions of the
form α × IdT : 0 → Diff (M × T), providedα has some rigidity properties itself, and
contains a(TNS) subaction.

1. Introduction
This paper is a contribution to the rigidity program initiated by Zimmer [Z].

The goal of the program is to classify the smooth actions of higher-rank semi-simple Lie
groups and of their (irreducible) lattices on compact manifolds. It was expected that any
such lattice action that preserves a smooth volume form and isergodiccan be reduced to
one of the following standard models: isometric actions, linear actions on nilmanifolds, and
left translations on compact homogeneous spaces. This original conjecture was disproved
by Katok and Lewis (see [KL2 ]): by blowing up a linear nilmanifold-action at some fixed
points they exhibit real-analytic, volume-preserving, ergodic lattice actions on manifolds
with complicated topology.

Nevertheless, imposing additional assumptions on the action, for example, some
hyperbolicity, allows for global classification results. The existence of an Anosov element
in the action is used in [KLZ ] to give a global classification of SL(n,Z) actions onTn that
preserve an absolutely continuous probability measure. Other global classification results
for Anosov actions can be found in [GS].

Much work was also done to study perturbations of higher-rank lattices and Lie groups
actions (see [H, KL1, KL2, KLZ, KS2, MQ, QY1, QY2 ]). In many of these papers, the
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existence of an Anosov element, respectively of a spanning family of directions that are
hyperbolic for certain elements of the action, was essential. A first attempt to study the
deformation rigidity of partially hyperbolic product actions that contain a compact factor
was carried out in [NT1].

Notation. (1) Unless specified otherwise, we assume that all manifolds and maps are
smooth.

By Ck
−

we denote the class of functions that areCk−ε for anyε > 0. TheCk−-topology
stands for the coarsest topology for which the inclusionsCk− ⊂ Ck−ε are continuous for
eachε > 0. However, byC1−

we meanC1.
(2) Throughout this paper by aCr -laminationwe mean a topological foliation whose

leaves areCr -submanifolds that vary continuously in theCr -topology.

Definition. Let 0 be a finitely generated discrete group,M a compact manifold, and
φ, φ̃ : 0 ×M → M C∞-actions. Fix a finite set of generators{γi} of 0. We say thatφ is
CL-closeto φ̃ if theC∞-diffeomorphismsφ(γi) andφ̃(γi) are close in theCL-topology for
all i. A CL-perturbationof the actionφ is aC∞-actionCL-close toφ. A CL-deformation
of the actionφ is aCL-continuous path ofC∞-actionsφt , 0 ≤ t ≤ 1, with φ0 = φ.
An actionφ is said to beCL,K -locally rigid if any CL-perturbation ofφ contained in
a sufficiently smallCL-neighborhood ofφ is conjugated toφ by aCK -diffeomorphism
which isC0-close to the identity. An actionφ is said to beCL,K -deformation rigidif any
CL-deformation ofφ contained in a sufficiently smallCL-neighborhood ofφ is conjugated
to φ by a continuous path ofCK -diffeomorphismsC0-close to the identity.

We are interested in rigidity results for partially hyperbolic actions that have a trivial
factor.Deformation rigidityresults were obtained in [NT1]. The main goal of this paper is
to prove thelocal rigidity of certain actions of this type.

Let π be the standard linear action of SL(n,Z) on then-dimensional torusTn. The
holonomy considerations used in this paper lead to the following improvement upon the
main result of [NT1] (see the end of §4 for the proof).

THEOREM 1.1. Let n ≥ 3 and d ≥ 1 be integers. Letρ be the action ofSL(n,Z) on
T
n+d = T

n × T
d given byρ(A)(x, y) = (π(A)x, y), x ∈ T

n, y ∈ T
d, A ∈ SL(n,Z).

Then, for any integerK ≥ 1, the actionρ isC5,K−
-deformation rigid.

One special case of our new result is a strengthening of Theorem 1.1 when the fibers
are one-dimensional (see the proof after that of Theorem 3.3).

THEOREM 1.2. Let0 ⊂ SL(n,Z) be a subgroup of finite index and letρ be the action of
0 on T

n+1 = T
n × T given byρ(A)(x, y) = (π(A)x, y), x ∈ T

n, y ∈ T, A ∈ 0. Then,
for n ≥ 3 and any integerK ≥ 1, the actionρ isC2,K−

-locally rigid.

More examples are given in Corollary 3.4 and the remarks following it.
The main part of Theorem 1.1, proved in [NT1], is based on three results in hyperbolic

dynamics: a generalization of Livsic’s cohomological results to cocycles with values in
diffeomorphism groups, a non-commutative version of the Anosov closing lemma, and a
version of the Hirsch–Pugh–Shub structural stability theorem.
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Note that Theorem 1.2 does not imply that the actionρ is C2,∞-locally rigid because
the size of theC2-neighborhood guaranteed by the theorem depends onK. The main
ingredients of the proof are two rigidity results: one concerns(TNS) abelian actions,
the other actions of property-(T ) groups. This approach obtains the rigidity of partially-
hyperbolic actions of product type from the (known) rigidity of hyperbolic actions.

It has been noticed for some time that many Anosov actions of abelian groups display an
array of rigidity properties. The vanishing of the first cohomology groups with coefficients
in R

n was noticed for the first time in [KS1]. This result is extended to cohomology
groups with coefficients in a matrix Lie group in [KNT ]. Local and global rigidity results
for abelian Anosov actions are proved in [KL1 ] and [KS2].

As a consequence of the Hirsch–Pugh–Shub structural stability theorem (see [HPS] and
Theorem 2.1), small perturbations of abelian partially hyperbolic actions of product type
are conjugated to skew products of abelian Anosov actions by cocycles with coefficients in
diffeomorphism groups. Given the previous results, it is natural to expect certain rigidity
phenomena to appear for these actions as well.

A basic fact proved in this paper is that for certain higher-rank abelian partially
hyperbolic actions of product type, the sum of the stable and unstable distributions of
any regular element of the perturbation is integrable. In view of the situation for Lie group
valued cocycles (see [KNT ]), one might expect the leaves of the integral lamination to
be closed manifolds covering the base simply, thus obtaining a conjugacy between the
perturbation and a product action. This amounts to showing that the only small solutions
of a particular system of equations in Diff (or Homeo), determined by the holonomy of
the integral lamination, are the trivial ones. We obtain the above-mentioned conclusion
under the supplementary assumption that some regular element of the perturbation has
a pointwise fixed center leaf. It is not clear to us how to remove this additional
assumption.

Namely, one has to deal with the following question.

Question.Let T : M → M be an Anosov diffeomorphism on the compact manifoldM.
Let N be a compact manifold andf a partially hyperbolic diffeomorphism ofM × N

which isC1-close toT × IdN . Assume that the stable and unstable foliations off are
jointly integrable. Does it follow that the diffeomorphismf is conjugated toT × S, where
S ∈ Homeo(N)? That is, does the foliation integrating the stable and unstable foliations
of f have closed leaves?

Theorem 1.2 is obtained as follows. Consider first the restriction of the actionρ to a
diagonalizable abelian subgroup of rankn − 1 of 0. The existence of a pointwise fixed
center fiber is ensured by a theorem of Stowe [St1, St2], first used in this context by Hurder
[H]. Applying the rigidity result to this abelian action, we obtain a conjugacy between the
original abelian action and its perturbation. Using the property(T ), we show that this
conjugacy reduces the0-action to a family of perturbations of hyperbolic actions.

This paper has the following structure: in §2 we recall a few facts from the theory of
partially hyperbolic diffeomorphisms and the definition of a(TNS) action, respectively of
property(T ). In §3 we present the main results, and in §§4 and 5 we give the proofs.
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2. Preliminaries
We recall first the definition of a partially hyperbolic diffeomorphism.

If T is a linear transformation between two normed linear spaces, the norm and the
conorm ofT are defined by

‖T ‖ = sup{‖T v‖; ‖v‖ = 1} and m(T ) = inf{‖T v‖; ‖v‖ = 1}.
Let X be a compact, connected, boundaryless manifold. AC1-diffeomorphismf :

X → X is called partially hyperbolic if the derivativeTf : TX → T X leaves invariant
a continuous splittingTX = Es ⊕ Ec ⊕ Eu, Es 6= 0 6= Eu, such that, with respect to a
fixed Riemannian metric onTX, Tf expandsEu, Tf contractsEs , and the inequalities

‖T sp‖ < m(T cpf ), ‖T cpf ‖ < m(T up f )

are true for allp ∈ X. If the center bundleEc = 0, thenf is called an Anosov (or
hyperbolic) diffeomorphism.

Assume that the partially hyperbolicCr -diffeomorphismf leaves invariant aC1-
laminationL tangent to the central directionEc. We say thatf is r-normally hyperbolic
atL if for all p ∈ X and 0≤ k ≤ r one has

m(T up f ) > ‖T cpf ‖k and ‖T spf ‖ < m(T cpf )
k.

The partially hyperbolic diffeomorphismf is said to satisfy therth-order center-
bunching conditionsif for all p ∈ X and 0≤ ` ≤ r

‖T spf ‖‖T cpf ‖` < m(T cpf ) and ‖T cpf ‖ < m(T up f )m(T
c
pf )

`.

We recall the results of [HPS, Theorems 6.1, 6.8, 7.1, 7.2] and [PSW, Theorem B]
about partially hyperbolicZ-actions and their small perturbations. We describe only the
case that will be of interest in the following, and skip the description of the terms that are
self-explanatory. In the case of hyperbolic diffeomorphisms, we have the classical results
of Anosov [A]. See also the Remark following Theorem 2.1.

THEOREM 2.1. ([HPS]) Let X be a compact manifold andf ∈ Diff r (X), r ≥ 1, a
diffeomorphism which isr-normally hyperbolic at aCr -laminationLf having compact
leaves.
(1) Through each leaf ofLf there exists aCr center-stablemanifold. The center-stable

manifold throughx ∈ X consists of those points whose forwardf -orbit does not
stray away from the orbit ofLf (x). Hence, since the leaves of the laminationLf are
compact, each center-stable manifold is a union of center leaves; the center-stable
manifolds form thecenter-stablelaminationWcs(f ). A similar statement holds for
thecenter-unstablelamination,Wcu(f ).

(2) There exists aCr stable laminationWs(f ) whose leaves lie in those ofWcs(f ).
The points of a stable leaf are characterized by sharp forward asymptoticity. Iff

satisfies the(r − 1)th order center-bunching conditions, then the stable distribution
isCr−1 on each center-stable leaf. In particular, the holonomy maps determined by
the stable lamination inside the center-stable leaves areCr−1. A similar statement
holds for theunstablelamination,Wu(f ).
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(3) If g ∈ Diff r (X) is C1-close tof , theng is r-normally hyperbolic at a uniqueCr -
laminationLg , and the stable, unstable, and center laminations ofg converge inCr

to those off asg converges tof in theCr -topology. The stable (unstable) holonomy
maps within the center-stable (respectively, center-unstable) leaves ofg converge in
Cr−1 to those off , asg converges inCr to f .

(4) Moreover, ifLf is aCr -foliation, then in the case (3) there exists aleaf-conjugacy
H ∈ Homeo(X) between(f,Lf ) and(g,Lg): H maps the leaves ofLf to those of
Lg andLg(H ◦ f (x)) = Lg(g ◦ H(x)). H is aCr -diffeomorphism of each leaf of
Lf onto its image, varying continuously inCr with the leaf. Forx ∈ X, Lg(H(x))
is uniquely characterized by the fact that itsg-orbit does not stray away from the
f -orbit of Lf (x). Modulo the choice of a normal bundle toLf , H is uniquely
determined. Ifg converges tof in theCr -topology thenH converges to the identity
in theCr -topology along the leaves ofLf and toIdX in C0.
Here ‘never strays away’ means thatgn(Lg(H(x))) stays within a tubular
neighborhood of predetermined small size off n(Lf (x)), for eachn ∈ Z.

Remark.The statement in (2) about the smoothness of the stable distribution along the
leaves ofWcs follows from theCr -section theorem [HPS, Theorem 3.5] (applied in this
case for(r − 1)). The compactness of the base space can be replaced by the appropriate
uniformities. The continuous dependence of these holonomies described in (3) follows
from a straightforward generalization of the similar continuity contained in theCr -section
theorem. Theorem B of [PSW] proves that the holonomy ofWs insideWcs isCr−1 under
milder conditions.

The crucial property on which the rigidity results for abelian actions are based is that of
a (TNS) action, introduced by Katok (see [KNT ]).

Definition. Let α : A × X → X be an action ofA = Z
κ on a compact manifoldX. We

say that the actionα is totally non-symplectic, or (TNS), if there is a familyS of partially
hyperbolic elements inA and a continuous splitting of the tangent bundleT X = ⊕`

i=1Ei

intoA-invariant distributions such that:
(i) the stable and unstable distributions of any element inS are direct sums of a sub-

family of theEi ’s;
(ii) any two distributionsEi andEj , 1 ≤ i, j ≤ `, are included in the stable distribution

of some element inS.

Remarks.(1) It is easy to see that given a(TNS) action, one can assume thatS consists
only of Anosov elements.

(2) Given a (TNS) action described byS ⊂ A with all elements ofS Anosov
and a splittingTX = ⊕`

i=1Ei , one can replace the distributions{Ei} by the non-zero
intersections

⋂
a∈S Eσ(a)(a), whereσ(a) ∈ {u, s}. Indeed, denote the new splitting by

TX = ⊕k
i=1Fi . It obviously satisfies (i), and (ii) can be checked as follows: givenFi

andFj , there are 1≤ i ′, j ′ ≤ ` such thatEi′ ⊂ Fi andEj ′ ⊂ Fj anda ∈ S such that
Ei′, Ej ′ ⊂ Es(a); thenFi, Fj ⊂ Es(a), by the choice of the new splitting.

(3) If the actionα is linear, andLj : Z
κ → R are its Lyapunov exponents (i.e. the

logarithms of the absolute values of the eigenvalues of the matrix corresponding to the
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derivative of the action; see [KS3]), then the(TNS) property can be characterized by:

if Lj = cLi for some constantc, thenc > 0.

In the following we will use the splitting given by Remark (2) above. Note that it is
given by integrable distributions. We call the corresponding laminationsminimal.

Several examples of(TNS) actions are presented in [KNT , §7]. We also discuss an
example in §3 of this paper, after Corollary 3.4.

Call an elementa ∈ A regular if α(a) is hyperbolic.
Recall the definition of Kazhdan’s property(T ) (see Proposition 1.14 in [HV ]).

Definition. A discrete group0 has theproperty(T ) if there exists a finite setS ⊂ 0 and
δ > 0 such that any unitary representationπ : 0 → U(H) that has a non-zero(δ, S)-
invariant vector has a non-zero invariant vector as well. (A vectorξ ∈ H is (δ, S)-invariant
if ‖π(a)ξ − ξ‖ ≤ δ‖ξ‖ for all a ∈ S.)

Finally, we introduce one more piece of notation, motivated by the examples we are
going to consider.

Notation. Given a partially hyperbolic diffeomorphism, by ahorizontal lamination we
mean aC1-lamination whose leaves are transverse to the center distribution. In particular,
by thehorizontal foliationof a product actionα × IdN onM ×N we mean the foliation
with leavesM × {y}, y ∈ N .

3. Results
To state our results in full generality we need the following definition.

Definition. Let 0 be a discrete group,M a compact manifold,K,L ≥ 1, andα : 0 →
Diff K(M) an action. The actionα is called continuouslyCL,K -locally rigid if it is
CL,K -locally rigid, and the conjugacy varies continuously in theCk

−
topology when the

perturbation varies continuously within a compact set in theCk-topology, for 1≤ k ≤ K.

Examples of continuously locally rigid actions are described before Corollary 3.4.
It is not hard to see that ‘bounded’CL,K -local rigidity implies continuousCL,K -local

rigidity. We do not know, however, whether either of them are implied byCL,K -local
rigidity.

The two main results of this paper are the following.

THEOREM 3.1. Let A = Z
κ (κ ≥ 2), M = T

m, N be a compact manifold and
α : A → Diff K+1(M) be a (TNS) action, whereK ≥ 0 is fixed. Considerρ : A →
Diff K+1(M × N) given byρ(a) := α(a)× IdN .

(a) AnyCK+1-action ρ̃ that isC1-close toρ has an invariant horizontal laminatioñH
which hasC(K+1)− leaves andCK -holonomy between the center leaves ofρ̃. The closeness
depends on(K+1)-normal hyperbolicity andKth-order center-bunching. As̃ρ converges
to ρ in CK+1, H̃ converges toH in C(K+1)− and the holonomy converges uniformly inCK

to the identity on each center leaf.
(b) Assume, moreover, that for some regular elementa ∈ A there is a center leaf which

is pointwise fixed bỹρ(a). Then, forρ̃ C1-close enough toρ, there is a homomorphism
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π : A → Diff K(N) such thatρ̃ is conjugated to the product actionα × π by a map
h ∈ Homeo(M ×N):

ρ̃(a′) = h(α(a′), π(a′))h−1, a′ ∈ A.
h(x, · ) is aCK -diffeomorphism onto its image for eachx ∈ M and varies continuously in
CK with x. The laminationH̃ is the image throughh of the invariant horizontal foliation
H of ρ. If ρ̃ converges toρ in C1, thenh converges toIdM×N in C0.

(c) LetK ≥ 1 and assume that the actionα is continuouslyCL
−,K -locally rigid for

someK + 1 ≥ L ≥ 1. If the conditions of (b) hold,̃ρ is CL-close toρ, and the
corresponding homomorphismπ : A → Diff K(N) is trivial (i.e. h conjugates̃ρ and
ρ), thenh( · , y) : M → M ×N isCK and varies continuously inCK− with y. Hence, by
Jourńe’s theorem (see Theorem 4.5),h ∈ Diff K

−
(M ×N). If ρ̃ converges toρ in CL+1

thenh converges toIdM×N in CL
−

.

Remark.Given aCK+1 cocycleβ : A × M → Diff K+1(N) over the actionα, one can
construct a skew-product actioñρ : A → Diff K+1(M × N) by

ρ̃(a)(x, y) = (α(a), β(a, x)(y)), wherex ∈ M,y ∈ N.
The conclusion of Theorem 3.1(b) is equivalent to the fact that the cocycleβ is
cohomologous to a constant cocycle. Hence, under the additional assumption that the
skew-product has a regular element that pointwise fixes a center fiber, we extend to
cocycles with values in diffeomorphism groups the results obtained in [KNT ] for cocycles
with values in Lie groups.

THEOREM 3.2. Let0 be a discrete group with property(T ) acting through aC1-action
ρ onM × T, whereM is a compact connected Riemannian manifold. Letµ be a smooth
probability measure whose support isM × T. Assume that:
(1) ρ preservesµ;
(2) ρ preserves each setMy := M × {y}, y ∈ T;
(3) there is an elementa0 ∈ 0 such thatρ(a0) is ergodic (with respect to the measure

induced byµ) on each setMy , y ∈ T.
Then any actioñρ : 0 → Diff (M × T) which isC1-close toρ and satisfies:
(i) ρ̃(a0) = ρ(a0);
(ii) ρ̃(a)(My) ∩My 6= ∅ for all a ∈ 0 andy ∈ T;
preserves each setMy .

Remark.One can replaceT by R, as can be seen from the proof. However, in that case,
more care is needed in the definition of theC1-closeness. If the fiber is non-compact it is
enough that the measureµ be locally finite.

Using these, one obtains the following:

THEOREM 3.3. FixK,L ≥ 1. Let0 be a discrete group with property(T ) andα a smooth
action of0 on a torusM = T

m such that:
(1) α has a periodic pointx0 ∈ M (i.e. theα-orbit of x0 is finite); denote its stabilizer

by00 ⊂ 0;
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(2) α �00
contains a(TNS) abelian actionα0;

(3) α �00
preserves an absolutely continuous probability measureν with supportM;

(4) the(TNS) abelian actionα0 is continuouslyCL
−,K -locally rigid;

(5) α �00
isCL

−,0-locally rigid.
(6) H 1(00, Vrep), the first cohomology group of00, is trivial for any finite-dimensional

representationrep : 00 → GL(V ).
Then the actionρ := α × IdT of 0 onM × T is CL∨2,K−

-locally rigid, wherea ∨ b =
max{a, b}.
Remarks.
(1) By [LS] and [LMM ], the α �00

-invariant absolutely continuous measureν
introduced in (3) is automatically smooth.

(2) Conditions (4) and (5) of Theorem 3.3 can be replaced by:
(4′) the(TNS) abelian actionα0 is continuouslyCL

−,1-locally rigid;
(5′) α �00

is continuouslyCL
−,K -locally rigid.

Proof of Theorem 3.3.Let ρ̃ be aCL∨2-small perturbation ofρ.
We first prove that̃ρ �00

is conjugated toρ �00
through a diffeomorphismh0 ∈

Diff K
−
(M × T) which isC1-close to the identity. We then show that the diffeomorphism

h0 actually conjugates̃ρ toρ on the whole group. This last argument might be well known,
we include it here for the sake of completeness.

By (1), ρ(00) has a pointwise fixed center leaf. One concludes from the theorem of
Stowe [St1, St2] and assumption (6) that there is a pointwise fixed center leaf forρ̃(00).

Denote byA ⊂ 00 the abelian group that induces the(TNS) actionα0 and byρ0, ρ̃0,
the restriction ofρ, respectivelỹρ, to A. Applying Theorem 3.1(c) to the actionρ0, one
obtains aC1-smallCK

−
conjugacyh0 betweeñρ0 andρ0, which isCL

−
-small on each

horizontal leaf ofρ0.
Since α0 contains Anosov diffeomorphisms and any Anosov diffeomorphism that

preserves a smooth measure is ergodic, it follows that we can apply Theorem 3.2 to the
actionρ �00

and its perturbation̂ρ �00
, whereρ̂ := h0 ◦ ρ̃ ◦ h−1

0 , by takingµ to be the
product of the smooth measureν and the Lebesgue measure onT.

Therefore,ρ̂ �00
preserves each setMy := M × {y}, y ∈ T. Using assumption (5), it

follows that for eachy ∈ T, the restriction(ρ̂ �00
)y of ρ̂ �00

to the setMy is conjugated to
the actionα �00

through a homeomorphismhy which isC0-close to IdM . But the Anosov
actionsα �A and(ρ̂ �A)y coincide, hencehy is in the centralizer ofα �A, which is discrete
(see [PY]). Thushy has to be the identity, and thereforeρ �00

= h0 ◦ ρ̃ ◦ h−1
0 �00

.

Next, we show that ifh0 ◦ ρ̃ ◦ h−1
0 �00

= ρ �00
on a subgroup of finite index00 ⊂ 0,

whereρ = α×IdT andh0 ∈ Diff 1(M×T) isC0-close to the identity, thenh0◦ρ̃◦h−1
0 = ρ

on0 as well. The only property we need is that there is an elementγ0 ∈ 00 such thatα(γ0)

is Anosov; the fact that the center leaf is one-dimensional is not relevant.
Without loss of generality, we may assume that00 is a normal subgroup. Denote

h0 ◦ ρ̃ ◦ h−1
0 by ρ̂, as before.

Letg ∈ 0. Thengγ0g
−1 ∈ 00, and thusρ(gγ0g

−1) = ρ̂(gγ0g
−1) = ρ̂(g)ρ(γ0)ρ̂(g

−1)

preserves each subsetMy , y ∈ T. Therefore,ρ(γ0) preserves each setρ̂(g−1)My , y ∈ T,
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g ∈ 0. However, each of these sets is aC1-manifold which is not far fromMy (at least,
on a family of generators of0). The only such invariant manifolds have to contain the
stable and unstable manifolds ofρ(γ0) (see, e.g., the proof of Lemma 4.1) and therefore
must coincide withMy ′ for somey ′ ∈ T. This means that there is a homomorphism
8 : 0 → Homeo(T) with the property thatρ(g)My = M8g(y), 8 �00

≡ IdT, and8 is
C0-close to the identity. Then Theorem 4.7 implies that8 ≡ IdT on0.

Denote, as before, bŷρy the restriction ofρ̂ toMy , y ∈ T. For anyg ∈ 0,

α(g)α(γ0)α(g)
−1 = ρy(gγ0g

−1) = ρ̂y(gγ0g
−1) = ρ̂y(g)α(γ0)ρ̂y(g)

−1,

therefore ρ̂y(g)−1α(g) ∈ Homeo(T) commutes withα(γ0), which is an Anosov
diffeomorphism. The same argument as above shows thatρ̂y(g)

−1α(g) = IdT on a family
of generators, hencêρy(g) = α(g) for all g ∈ 0. 2

Proof of Theorem 1.2.An example of action satisfying the assumptions of Theorem 3.3
is the standard linear action of0 on T

n, n ≥ 3, where0 is a subgroup of finite index
in SL(n,Z). Indeed, by a theorem of Prasad and Raghunathan [PR], 0 intersects a
conjugate of a givenR-split Cartan subgroup of SL(n,R) in a uniform lattice. Hence, the
intersection consists of commuting matrices which generate a(TNS) action onT

n. Take
L = 1. Condition (4) follows from [KL1 ], condition (5) from [KLZ ], and condition (6) is
a corollary of Theorem 2.1 in [Mar ]. Thus Theorem 1.2 is a corollary of Theorem 3.3.2

Katok and Spatzier have shown in a recent paper [KS2] that if α0 is an algebraic Anosov
action of Z

κ , κ ≥ 2, acting on an infranilmanifold with semisimple linear part such
that no non-trivial element of the group has roots of unity as eigenvalues in the induced
representation on the abelianization, thenα0 isC1,∞-locally rigid. Continuity of this local
rigidity follows from the proof. In the same paper, they prove theC1,∞-local rigidity of
linear Anosov actions of irreducible lattices in linear semisimple Lie groupsG all of whose
factors have real rank at least two. Moreover, for such a lattice action, there is a maximal
abelianR-split subgroup whose action on the abelianization satisfies the above conditions.

Hence, one has the following.

COROLLARY 3.4. Let0 be an irreducible lattice in a linear semisimple Lie groupG all
of whose factors have real rank at least two. Ifα : 0 → Diff ∞(Tm) is a linear action that
contains a(TNS) subaction, thenα × IdT isC2,K−

-locally rigid, for anyK ≥ 1.

By the aforementioned theorem of Prasad and Raghunathan and Remark (3) following
the definition of the(TNS) property, given a lattice0 in a semisimple Lie groupG, the
existence of a(TNS) subaction of a linear actionα : 0 → Diff (Tm) coming from a
representationπ : G → SL(m,Z) can be decided by computing the weights ofπ on an
R-split Cartan subgroup ofG. The irreducible representations of SL(n,R) are described
by Young tableaus. For example, forn ≥ 3 and 1 ≤ k ≤ n − 1, the representations
corresponding to the tableaus with one column of heightk 6= n/2, or two equal columns
of heightk 6= n/4, n/3, n/2,2n/3,3n/4, or one line of lengthk < n/2 contain a(TNS)
sub-representation. However, for each given semisimple Lie group, only finitely many
irreducible representations do so.
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4. The(TNS) property
In this section we prove Theorem 3.1.

Notice first that given a small perturbatioñρ of the A-actionρ and a fixed regular
elementa ∈ A, the center lamination of̃ρa is preserved bỹρ, hence it is the center
lamination of each regular partially hyperbolic diffeomorphism̃ρb, b ∈ A. Moreover,
the leaf-wise conjugacyHa of Theorem 2.1(4) betweeñρa andρa is a leaf-wise conjugacy
for each such̃ρb.

Indeed, denote byL the center foliation ofρa and by L̃ that of ρ̃a. Then, by
Theorem 2.1(4) for anyη, ξ ∈ M ×N :

η ∈ L̃(Ha(ξ)) ⇐⇒ ρ̃an(η) never strays away fromρan(L(ξ)).
Pick a finite family of regular generators ofA, and letb be one element of this family.

Then, forξ ∈ M × N , ρ̃b(ρ̃an(Ha(ξ))) is close toρb(ρan(L(ξ))), uniformly with respect
to n ∈ Z. Sinceρb preservesL, this means that̃ρan(ρ̃b(Ha(ξ))) never strays away from
ρan(L(ρb(ξ))). Therefore,̃ρb(Ha(ξ)) ∈ L̃(Ha(ρb(ξ))), which shows that̃ρb preserves̃L
andHa is a leaf-wise conjugacy between(ρ̃b, L̃) and(ρb,L). The claim now follows from
the uniqueness parts of (3) and (4) in Theorem 2.1.

Assume the minimal laminations ofα are given by

Fi =
⋂
a∈Si

Ws(a), Si ⊂ S ⊂ A, i ∈ I.

HenceSi ∩ Sj 6= ∅ for anyi, j ∈ I , by the(TNS) property. We can also assume that each
α(a), a ∈ S, is hyperbolic.

Let ρ̃ beC1-close toρ = α × Id, so that Theorem 2.1 can be applied forr = K + 1.
For i ∈ I andb ∈ Si consider the lamination

F̃ (b)
i :=

( ⋂
a∈Si

Wcs (̃a)

) ⋂
Ws(̃b), (4.1)

wherẽa stands for̃ρ(a). By Theorem 2.1, the above lamination hasCK+1 leaves, and its
holonomy within

⋂
a∈Si W

cs (̃a) isCK .

LEMMA 4.1. If a, b ∈ Si thenF̃ (a)
i = F̃ (b)

i .

Proof. By the unique integrability of these laminations, it is enough to deal with their
tangent distributions. Since the action is abelian, the splittingsT (M ×N) = Es(̃a) ⊕
Ẽc ⊕Eu(̃a) = Es(̃b)⊕ Ẽc ⊕ Eu(̃b) areA-invariant. We claim that

Ecs(̃a) ∩ Ecs(̃b) = Ẽc ⊕ [Es(̃a) ∩ Es(̃b)]. (4.2)

This clearly implies that

Es(̃a) ∩ [Ecs(̃a) ∩ Ecs (̃b)] = Es(̃b) ∩ [Ecs(̃a) ∩Ecs (̃b)] = Es(̃a) ∩ Es(̃b),
from which the desired conclusion follows.

To prove (4.2), letξ ∈ M ×N andv ∈ Ecsξ (̃a)∩Ecsξ (̃b). Thenv = v0 + va = v′
0 + vb,

with v0, v
′
0 ∈ Ẽc, va ∈ Es(̃a), vb ∈ Es(̃b). If v0 = v′

0, we are done. Otherwise, let
w := vb = (v0 − v′

0) + va ∈ Esξ (̃b). As n → ∞, wn := (̃an∗w)/‖̃an∗w‖ approaches unit

vectors inẼc, while staying inEs(̃b). However, the angle between the distributionsEs(̃b)

andẼc is bounded away from zero, a contradiction. 2
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By Lemma 4.1, one can denotẽF (a)
i , a ∈ Si by F̃i . Moreover,

F̃i =
⋂
a∈Si

Ws (̃a).

Definition. LetX be a (compact) Riemannian manifold andF andG two C1-laminations
of X.

(a) Givenδ > 0, by the local leaf of sizeδ at x of F , denotedF(x, δ), we mean the
connected component ofx in F(x) ∩ {y ∈ X : distX(x, y) < δ}.

(b) We say that the laminationsF andG arenon-tangentif

inf
x∈X

6 (TxF , TxG) > 0.

More generally, a family{Fi}i of C1-laminations isjointly non-tangentif

inf
x∈X

6 (TxFi , span
{
TxFj : j 6= i

}
) > 0, for eachi.

(c) We say that the non-tangent laminationsF andG commute locallyif there are
δ, ε > 0 such that for anyx ∈ X, y ∈ F(x, δ), andz ∈ G(x, δ), there is exactly one
point inF(z, ε) ∩ G(y, ε).
Remarks.Assume thatF andG are two non-tangent locally commutingC1-laminations
of a compact manifold.

(1) The following strengthening of the commutativity property holds:
there areδ, ε,A > 0 such that for anyx ∈ X, y ∈ F(x, δ)
andz ∈ G(x, δ), the pointw = F(z, ε) ∩ G(y, ε) satisfies

distX(x,w) ≤ Amax{distX(x, y),distX(x, z)}.
(4.3)

(2) Given two pointsx andy in a leaf ofG and a pathγ in the leaf connecting them, one
can define theG-holonomy alongγ between neighborhoods ofx in F(x) andy in F(y).
This holonomy is a local homeomorphism. (This follows from local commutation for short
γ . In general, decomposeγ into short segments.)

LEMMA 4.2. For eachi, j ∈ I , the laminations̃Fi andF̃j commute locally.

Remark.This is the only place where it is important thatM is a torus. In this case any pair
of minimal laminations ofα commute locally. Using the fact that̃ρ is a small perturbation
of a product map, and the structural stability of partially hyperbolic diffeomorphisms, we
show that this property can be lifted to the laminationsF̃i .
Proof of Lemma 4.2.By the remarks at the beginning of this section, there is a
homeomorphismH ∈ Homeo(M ×N), which isCK+1 in theN-direction and induces
a leaf-wise conjugacy between the center laminations ofρ and ρ̃. SinceWcs(ρ(a)) =
Ws(α(a)) × N , hence the center-stable leaves ofρ are spanned by center leaves, one
concludes from the characterization of Theorem 2.1 thatH also takes the center-stable
laminations ofρ into those of̃ρ.

By [F] and [M ], the actionα is conjugated through a H¨older homeomorphism to a
linear actionα0. Via this conjugation, stable leaves are mapped to stable leaves. Since the
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stable laminations ofα0 areaffine(i.e. given by translations of linear subspaces; recall that
M = T

m), the laminations{Fi} correspond through this conjugacy to affine foliations, and
clearly any two affine foliations on a torus commute locally. We conclude that any two of
the laminations{Fi} commute locally as well. Letδ0, ε0, andA0 be constants given by
(4.3), chosen to be correct for any pairFi andFj (i, j ∈ I ).

Given a subsetB ⊂ M × N , let us denote byWc(B), respectivelỹWc(B), its saturation
with respect to the center lamination ofρ, respectivelỹρ:

Wc(B) := ∪{Wc(ξ) : ξ ∈ B}, W̃ c(B) := ∪{W̃c(ξ) : ξ ∈ B}.
Note thatW̃ c(B) = H(Wc(H−1(B))).

Let i, j ∈ I , ξ ∈ M ×N , η ∈ F̃i (ξ, δ), ζ ∈ F̃j (ξ, δ). We want to show that
F̃i (ζ, ε) ∩ F̃j (η, ε) has exactly one element. (The values ofδ and ε will be specified
later.)

Consider the saturation bỹWc of the above sets. In view of the definition (4.1) of the
laminationsF̃k, there are numbersδ′, δ′′, ε′, ε′′, δ̄′, δ̄′′, ε̄′, ε̄′′ > 0 (depending onξ, η, ζ, δ,
andε) such that

Fi (x, δ′)× N ⊂ H−1(W̃ c(F̃i (ξ, δ))) ⊂ Fi (x, δ̄′)×N,

Fj (x, δ′′)× N ⊂ H−1(W̃ c(F̃j (ξ, δ))) ⊂ Fj (x, δ̄′′)× N,

Fi (z, ε′)× N ⊂ H−1(W̃ c(F̃i (ζ, ε))) ⊂ Fi (z, ε̄′)× N,

Fj (y, ε′′)× N ⊂ H−1(W̃ c(F̃j (η, ε))) ⊂ Fj (y, ε̄′′)×N,

wherex = prM(H
−1(ξ)), y = prM(H

−1(η)) ∈ Fi (x, δ̄′), andz = prM(H
−1(ζ )) ∈

Fj (x, δ̄′′). (Here prM stands for the projectionM × N → M.) Since the laminations{F̃k}
converge inC1 to {Fk} as ρ̃ → ρ in C1 andH±1 are uniformly continuous, for each̃ρ
C1-close toρ one can first chooseε > 0 such that

0< ε1 := min
η,ζ∈M×N{ε′, ε′′} ≤ max

η,ζ∈M×N{ε̄′, ε̄′′} < ε0

and thenδ > 0 such that

max
ξ∈M×N{δ̄′, δ̄′′} ≤ min

{
δ0,

ε1

A0 + 1

}
.

See Figure 1 for what follows.
ThereforeFi (z, ε′) ∩ Fj (y, ε′′) contains exactly one element, hence

W̃c(F̃i (ζ, ε)) ∩ W̃c(F̃j (η, ε)) = H(H−1(W̃ c(F̃i (ζ, ε))) ∩H−1(W̃ c(F̃j (η, ε))))
= H((F̃i(z, ε′)×N) ∩ (F̃j (y, ε′′)×N))

consists of exactly one leaf of̃Wc, sayL̃c0. Letτ ′ := F̃i (ζ, ε)∩L̃c0 andτ ′′ := F̃j (η, ε)∩L̃c0
(these intersections contain at most one point, forε small enough).

Picka ∈ Si∩Sj . Thenτ ′, τ ′′ ∈ Ws(ξ, ã, δ+ε)∩L̃c0. Since the last intersection consists
of a single point forδ + ε small enough, we conclude thatτ ′ = τ ′′. 2

The(TNS)-property is necessary only to obtain Lemma 4.2. One could then prove the
following independent result.
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FIGURE 1.

THEOREM 4.3. Given a family{Gi} of C1-laminations on a compact manifold which are
jointly non-tangent and pairwise commute locally, there is aC1-laminationG spanned by
them. If the initial laminations areCk, thenG isCk

−
.

However, in our case we can take advantage of the fact thatM is a torus to simplify the
proof.

LEMMA 4.4. Let a ∈ A be a regular element. If̃ρ is C1-close toρ, thenWs(̃a) and
Wu(̃a) commute locally (recall that̃a stands for̃ρ(a)).

Proof. AssumeWs(̃a) = span{F̃i : i ∈ I s(a)} andWu(̃a) = span{F̃i : i ∈ Iu(a)},
whereI s(a) = {ik : 1 ≤ k ≤ S} and Iu(a) = {jk : 1 ≤ k ≤ U} form a partition
of I . We claim that for anyδ1 > 0 there is aδa > 0 such that, forξ ∈ M ×N ,
each pointη ∈ Ws(ξ, ã, δa), respectivelyζ ∈ Wu(ξ, ã, δa), can be reached fromξ by
juxtaposing segments of lengths at mostδ1 of the laminations{Fi : i ∈ I s(a)}, respectively
{Fj : j ∈ Iu(a)}. That is, there are pointsηi andζj such that

ηi1 ∈ F̃i1(ξ, δ1), ηi2 ∈ F̃i2(ηi1, δ1), . . . , η = ηiS ∈ F̃iS (ηiS−1, δ1)

and
ζj1 ∈ F̃j1(ξ, δ1), ζj2 ∈ F̃j2(ζj1, δ1), . . . , ζ = ζjU ∈ F̃jU (ζjU−1, δ1).

Indeed, proceed as in Lemma 4.2: consider the saturation ofWs(ξ, ã, δ) by W̃c , map
it via H−1 to the corresponding picture forρ and use the fact thatα is conjugated to a
linear action to obtain the decomposition of the stable and unstable laminations ofα(a)

into segments ofα-minimal laminations. Take theρ-center leaves of the points obtained
this way and map them throughH to center leaves of̃ρ. The intersections of these center
leaves withWs(ξ, ã, δ) yield the pointsηi . By reducingδ one can obtained the desired
conclusion. Apply the same procedure forWu(̃a).

Pick ε > 0 small enough. One can chooseδ1 > 0 (and, therefore,δa) such
that Lemma 4.2 and (4.3) imply that the following construction is well defined: given
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ξ ∈ M × N , η ∈ Ws(ξ, ã, δa), andζ ∈ Wu(ξ, ã, δa), let ηi, ζj be as above and define
inductively the pointsξk,l , 0 ≤ k ≤ S, 0 ≤ l ≤ U , by

ξ0,0 := ξ; ξ0,l := ζjl ; ξk,0 := ηik ;
ξk,l := F̃ik (ξk−1,l, ε) ∩ F̃jl (ξk,l−1, ε) for k, l ≥ 1.

See Figure 2.
But thenξS,U ∈ Wu(η, ã, U · ε) ∩ Ws(ζ, ã, S · ε). Since the stable and unstable

laminations of̃a are non-tangent, forε > 0 small enough this intersection has only one
element, thus proving the local commutation ofWs(̃a) andWu(̃a). 2

Proof of Theorem 3.1(a).We construct first the laminatioñH.
Fix a regular elementa ∈ S. There is anε̄a > 0 such that the intersection

Ws(ξ, ã, ε̄a) ∩ Wu(η, ã, ε̄a) has at most one element for anyξ, η ∈ M × N . Choose
δa > 0, ε̄a > εa > 0, Aa > 1 satisfying (4.3) applied forWs(̃a) andWu(̃a). For
ξ, η ∈ M ×N , denote

[ξ, η] := Ws(ξ, ã, εa) ∩Wu(η, ã, εa)

(hence, either[ξ, η] is empty or it contains one point). Note that local commutativity can
be rephrased as

[ξ, η] 6= ∅ and dist([ξ, η], ξ) < δa, dist([ξ, η], η) < δa H⇒ [η, ξ ] 6= ∅.
Considerδ̄a := min{εa, δa/(Aa + 2)}. Forξ ∈ M ×N , define

Q(ξ) = Q(ξ, ã, δ̄a) := [Wu(ξ, ã, δ̄a),W
s(ξ, ã, δ̄a)],

where[U,V ] := {[u, v] : u ∈ U, v ∈ V }.
Since the laminationsWs(̃a) andWu(̃a) are continuous, non-tangent, and commute

locally,Q(ξ) with the induced topology fromM × N is homeomorphic toWs(ξ, ã, δ̄a)×
Wu(ξ, ã, δ̄a), i.e. to an open set inRm (m = dimM). We claim that the family
{Q(ξ) : ξ ∈ M × N} determines plaques of aC0-lamination. In view of [R], this is
equivalent to showing that

Q(ξ) ∩Q(η) 6= ∅ H⇒ Q(ξ) ∩Q(η) is open in bothQ(ξ) andQ(η).
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But this follows from (actually, is equivalent to) the local commutativity of the laminations
Ws(̃a) andWu(̃a).

It is enough to show that ifζ ∈ Q(ξ), thenζ belongs to both IntQ(ξ)(Q(ξ) ∩ Q(ζ ))
and IntQ(ζ)(Q(ξ) ∩Q(ζ )). We will check the first statement, the other being similar. See
Figure 3.

Let ζ = [τ0, η0], where τ0 ∈ Wu(ξ, ã, δ̄a), η0 ∈ Ws(ξ, ã, δ̄a). Note that
distM×N(ζ, η0), distM×N(τ0, η0) < δa. Since the holonomy betweenWs(ξ, ã, δ̄a) and
Ws(ζ, ã, δ̄a) alongWu(̃a) is a local homeomorphism, there is an open neighborhood
V s of η0 in Ws(ξ, ã, δ̄a) such that[ζ, V s ] ⊂ Ws(ζ, ã, δ̄a). Similarly, there exists an
open neighborhoodV u of τ0 in Wu(ξ, ã, δ̄a) with [V u, ζ ] ⊂ Wu(ζ, ã, δ̄a). Then the set
[V u, V s ] is an open neighborhood ofζ in Q(ξ), and it is also included inQ(ζ ). Indeed,
for η ∈ V s , τ ∈ V u, letτ ′ = [τ, ζ ], η′ = [ζ, η]. Then[τ, η] = [τ ′, η′] ∈ Q(ζ ), as claimed.

We have proved therefore that there is aC0-lamination integratingWs(̃a) andWu(̃a),
hence the family{F̃i}i∈I as well. Call this laminatioñH. It is clearlyA-invariant and
horizontal, because so are the laminations used to construct it.

Since it is obtained as the span of twoCK+1-laminations, its leaves will beC(K+1)− , as
can be easily seen from the following theorem of Journ´e (the corollary is a consequence of
the proof).

THEOREM 4.5. (Journ´e [J]) Assume given on a manifold two continuous transverse
laminations,Fs andFu, with uniformly smooth leaves. If a functionf is uniformlyCk+δ-
smooth along the leaves ofFs andFu, thenf isCk+δ-smooth(1 ≤ k ≤ ∞, δ ∈ (0,1)).
COROLLARY 4.6. Moreover, ifF ′

s → Fs , F ′
u → Fu, f ′ �F ′

u
→ f �Fu , f ′ �F ′

s
→ f �Fs

in theCk+δ-topology, thenf ′ → f in theCk+δ-topology.

Indeed, given a pointξ ∈ M × N , consider a smooth coordinate systemχ : U × V →
M ×N such that in these coordinates a neighborhood ofξ in the leafH̃(ξ) is given by the
graph of a functionF : U → V (hereU andV are open subsets of Euclidean spaces).
This function is uniformlyCK+1 along the laminations ofU obtained by projecting onto
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U the leaves ofWs(̃a)∩ H̃(ξ), respectivelyWu(̃a)∩ H̃(ξ). Therefore, by Theorem 4.5,F
isC(K+1)− .

Finally, the holonomy ofH̃ is CK between center leaves because any path alongH̃
can be realized as a sequence of steps taken alternately insideWcs (̃a) andWcu(̃a), and,
by Theorem 2.1(2), the stable and unstable holonomies areCK within the leaves of the
center-stable, respectively center-unstable, laminations. 2

Proof of Theorem 3.1(b).Pick somey0 ∈ N and consider the projectionq : M ×N →
M ≡ M × {y0} along the center foliation of the perturbed actionρ̃ (which is transversal to
both the horizontal laminatioñH and the submanifoldM × {y0}). ThusM × N becomes
a fiber bundle overM, with the fibersCK -diffeomorphic toN (by Theorem 2.1(4)).
Moreover, this identification between the fibers andN is Ck-uniformly bounded (k ≤ K)
with respect tõρ in aCk-small neighborhood ofρ.

Due to the way the laminatioñH is constructed, each leaf of it is a covering space
of M. Given a center leafq−1(x), consider the holonomy map ofH, 1 : π1(M, x) →
Homeo(q−1(x)), obtained as follows: a loopγ ∈ �(M, x) defines the map that associates
to y ∈ q−1(x) the endpoint of the lift beginning aty of γ to the leafH̃(y). Note that, by
part (a) of Theorem 3.1, the image of1 is actually in DiffK(q−1(x)).

The main step is to show that the holonomy map1 is trivial.
Assume the fiberq−1(x) is preserved bỹρ(a), for some non-triviala ∈ A (this

always happens, because each partially-hyperbolic map has periodic points in the quotient
M ∼= (M ×N)/q). Theρ̃(a)-invariance of both̃H and the center laminations imply that

1 ◦ Aa(γ ) = φa ◦1(γ ) ◦ φ−1
a , γ ∈ π1(M, x), (4.4)

whereAa ∈ Aut(π1(M, x)) is the action induced bỹρ(a) andφa := ρ̃(a) �q−1(x).
In the case when1 takes values in a Lie group, equation (4.4) has only the solution

1 ≡ I , provided1 andφa are close to the identity (see [KNT , Lemma 4.5]). One would
expect the same to be true in DiffK , but we were not able to find a proof. However, if we
add the condition thatφa = Id (i.e. we consider the equation1 ◦ Aa = 1), then this is
an easy consequence of the following theorem of Newman [N], presented here in a version
due to Smith [S] (see [B, §9] for a proof).

THEOREM 4.7. (Newman [N]) LetX be a connected topological manifold endowed with
a metric. Then there is anε > 0 such that any non-trivial action of a finite group (or
compact Lie group) onX has an orbit of diameter larger thatε.

LEMMA 4.8. LetM = T
m anda ∈ Diff (M) be an Anosov diffeomorphism that has a fixed

pointx0 ∈ M. Fix a setT of generators ofπ1(M, x0) ∼= Z
m. Consider the automorphism

A ∈ Aut(π1(M, x0)) ∼= SL(m,Z) induced bya.
Given a compact manifoldX, there is a neighborhoodU of the identity inHomeo(X)

with the following property: if1 : π1(M, x0) → Homeo(X) is an A-invariant
homomorphism (i.e.1◦A = 1) which mapsT intoU , then1 is the trivial homomorphism.

Remark.As in Lemma 4.5 of [KNT ], this implies that the same result holds fora an
infranilmanifold Anosov diffeomorphism.
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FIGURE 4.

Proof of Lemma 4.8.It is enough to consider the case whenT is the set{ei}1≤i≤m, given
by the canonical basis ofZm. Denote1i := 1(ei).

The equation1 ◦ A = 1 implies that1 is the identity on the image ofA − Im.
SinceA is induced by an Anosov diffeomorphism, 1 is not in the spectrum ofA, hence
Z
m/ Im(A− Im) is a finite group, of orderc = det(A− Im). Therefore,1ci = IdX for each

1 ≤ i ≤ m. LetU be a neighborhood of the identity in Homeo(X) such that Theorem 4.7
can be applied to any cyclic group of order dividingc. 2

Once we know that the holonomy of̃H is trivial, we can construct the desired
homeomorphismh as follows. See Figure 4. LetH ∈ Homeo(M × N) be the leaf-
conjugacy betweenρ and ρ̃ given by Theorem 2.1(4). Hence, the center leaves ofρ̃ are
given by the images ofH(x, · ) : N → M × N , x ∈ M. DenoteH(x, · ) byHx . Since
eachHx is a diffeomorphism fromN to its image, one can speak ofH−1

x .
Fix a pointx∗ ∈ M and let

h(x, y) := Hx(N) ∩ H̃(Hx∗(y)). (4.5)

That is, h(x, · ) ◦ H−1
x∗ is the holonomy along̃H between the center leaves given by

Hx∗ andHx . Thus, by part (a) of Theorem 3.1,h(x, · ) : N → M × N is a CK -
diffeomorphism onto its image, as desired. The intersection in the definition is a unique
point by Lemma 4.8, andh is a homeomorphism becausẽH and the center lamination of
ρ̃ are transverse and give a global ‘product structure’ onM ×N . Note that the leaves of
H̃ are the images ofh( · , y) : M → M × N , y ∈ N , and thath(x,N) = Hx(N) for each
x ∈ M.

It remains to check thath conjugates̃ρ to a product action:

ρ̃a(h(x, y)) = ρ̃a(Hx(N)) ∩ ρ̃a(H̃(Hx∗(y)))

= Hαa(x)(N) ∩ H̃(ρ̃a(Hx∗(y))) = Hαa(x)(N) ∩ H̃(Hx∗(Aa(y)))

= h(αa(x),Aa(y)), (4.6)
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whereAa ∈ Diff K(N) is defined byh(αa(x∗), Aa(y)) = ρ̃a(Hx∗(y)), hencẽρa(Hx∗(y))
andHx∗(Aa(y)) are in the same leaf of̃H. (The second equality in (4.6) follows from the
fact thatH is a leaf-conjugacy and thẽρ-invariance ofH̃.)

TheC0-convergenceofh to IdM×N asρ̃ converges toρ inC1 follows from Theorem 2.1
and (4.5). 2

Proof of Theorem 3.1(c).Denote byM̃y the image ofM throughh( · , y), y ∈ N . This
is a leaf ofH̃, hence aCK -submanifold ofM ×N , diffeomorphic toM. Denote by
prM : M ×N → M the projection on the first factor. SincẽH is a laminationCK -
close to the horizontal foliation ofρ, there are uniquely determinedCK -diffeomorphisms
φy : M → M̃y ⊂ M ×N that are right inverses of prM ; in addition,y ∈ N 7→ φy ∈ CK
is continuous. In view of Theorem 2.1(3), and Corollary 4.6,φy converges inCL

−
to

x ∈ M 7→ (x, y) ∈ M × N , uniformly with respect toy ∈ N , as ρ̃ converges toρ in
CL. Under the same conditions,h0 converges inC0 to IdM×N , by Theorem 3.1(b). Hence,
for eachy ∈ N , φ−1

y ◦ h( · , y) conjugates theA-actionsα andφ−1
y ◦ ρ̃ �M̃y

◦ φy , and is

C0-small. Moreover, since the actions are hyperbolic, this is the only conjugacyC0-close
to IdM . Therefore, sinceα is continuouslyCL

−,K -locally rigid, φ−1
y ◦ h( · , y) is CK and

varies continuously withy ∈ N in theCK -topology, provided̃ρ isCL-close enough toρ.
Thus the same is true fory ∈ N 7→ h( · , y) ∈ CK(M,M ×N).

The fact thath converges to IdM×N inCL
−

whenρ̃ converges toρ inCL+1 follows from
the convergence of the holonomy maps (Theorem 2.1(3)), the continuous local rigidity of
α, and Journ´e’s theorem. 2

Proof of Theorem 1.1.Theorem 7.1 in [NT1] proves theCK+Lip,K−3-deformation rigidity
of ρ for K ≥ 4. In particular,ρ is C5,1-deformation rigid. LetK ≥ 1 and assume that
the smooth actioñρ is C5-close enough toρ so that Theorem 2.1 applies for̃ρ|A with
r = K + 1, whereA is anR-split abelian subgroup ofSL(n,Z) provided by the theorem
of Prasad and Raghunathan. Denote byh0 ∈ Diff 1(Tn × T

d) the conjugacy betweenρ
and ρ̃ given by [NT1]. Then H̃, the image throughh0 of the horizontal foliationH of
ρ, is a ρ̃ �A-invariant horizontal foliation which has trivial holonomy. Since it must be
spanned by the stable and unstable laminations ofρ̃ �A, it is aC(K+1)−-lamination. Let
h be the conjugacy constructed as at the end of the proof of Theorem 3.1(b). Note that
the homomorphismπ is trivial, becauseρ andρ̃ are conjugated. Thenh is CK along the
center direction ofρ; alongH one uses the result of [KL1 ], as was done in [NT1]. Journé’s
theorem implies thath belongs toCK

−
. Finally, since bothh andh0 carryH to H̃, they

differ by a constanty-factor:h(x, y) = h0(x,8(y)). Thush also conjugatesρ andρ̃. 2

5. Property(T )
In this section we prove Theorem 3.2. Although some of the following properties are
true in a more general setting, we will state them only for the situation considered by the
theorem.

Recall the following consequence of the property(T ) (see [HV , Proposition 1.16]):

Assume the group0 has the property(T ) relative to the finite setS ⊂ 0.
Then, for anyε > 0 there is aδT = δT (ε) > 0 such that given a unitary
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representationπ : 0 → U(H) and a(δT , S)-invariant vectorξ ∈ H , ξ 6= 0,
there exists an invariant vectorξ ′ 6= 0 with ‖ξ − ξ ′‖ ≤ ε‖ξ‖.

Denote by1A : M × T → R the characteristic function of the setA ⊂ M × T.
For a ∈ 0, let 1a := ∂(ρ̃(a)∗µ)/∂µ, the Radon–Nikodym derivative, where

(8∗µ)(A) := µ(8−1(A)) for A ⊂ M × T and8 : M × T → M × T. One obtains a
unitary representationU : 0 → U(L2(M × T, µ)) by Ua(f ) = (f ◦ ρ̃(a)−1) ·11/2

a . In
the following we use the notationUa, a ∈ 0, for the unitary action described above andVa,
a ∈ 0, for the unitary action induced byρ onL2(M × T, µ) (note that sinceρ preserves
µ, Va(f ) = f ◦ ρ(a)−1).

Let µT be the measure induced onT from µ via the projection prT : M × T → T:
µT(A) := µ(M ×A) for A ⊂ T. Denote byµy the conditional measure induced byµ on
My , y ∈ T:

∫
M×T g dµ = ∫

T
[∫
My
g dµy] dµT(y). Thenµy(My) = 1 for all y ∈ T.

Note that iff ∈ L2(M × T, µ) is invariant under the0-actionU , then|f |2 dµ is a
ρ̃-invariant measure onM × T. Conditions (2), (3) and (i) of Theorem 3.2 imply thatf
has to beµy-a.e. constant onMy , for µT-a.e.y ∈ T.

Notation. Denote distC1(ρ, ρ̃) := max{distC1(ρ(a), ρ̃(a)) : a ∈ S}. Write ρ̃(a)−1 =
(ha, va), whereha : M × T → M, va : M × T → T.

If two functions differ only on a set ofν-measure zero we will say that they are equal
modν. We use the same notation for sets that are equal up to aν-null set. When there is
no possibility of confusion, we will abbreviate the notation forLp-spaces.

Remark.Denote byL2(M × T)ρ , respectivelyL2(M × T)ρ̃ , the vectors ofL2(M × T)

that are fixed by the actionsV , respectivelyU . The hypotheses of Theorem 3.2 imply that

L2(M × T)ρ̃ ⊂ L2(M × T)ρ ∼= L2(T, µT).

The conclusion of the Theorem is thatL2(M × T)ρ̃ = L2(M × T)ρ .
If L2(T, µT) were finite dimensional, the result would follow easily from the fact that0

has property(T ). In the general case, one needs a generating family ofL2(M × T)ρ which
is uniformly almost-invariant forU . Note, however, that even if two different measure
preserving transformations are close to each other, the unitaries they induce are far apart
in the operator norm. Hence, in order to take advantage of the fact thatρ̃ is close toρ, one
has to choose these vectors in a special way. Our approach is, roughly speaking, to select
them recursively.

Remark.The next two lemmas hold if we replaceT by any compact manifold. Only in
Lemma 5.3 is it important that the center direction is one-dimensional.

We begin with some simple estimates.

LEMMA 5.1.
(a) If f ∈ L2(M × T, µ), then

‖Ua(f )− Va(f )‖L2 ≤ ‖f ◦ ρ̃(a)−1 − f ◦ ρ(a)−1‖L2 · ‖11/2
a ‖L∞

+ ‖f ‖L2 · ‖11/2
a − 1‖L∞ .
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(b) If φ ∈ C0(T) andf = φ ◦ prT (i.e.f depends only on the second variable, hence is
V -invariant), then

‖f ◦ ρ̃(a)−1 − f ‖L2 ≤ ‖f ‖Lip · distC0,�(va,prT) · µ(�)1/2,
where� = suppf ∪ supp(f ◦ ρ̃(a)−1) ⊂ M × T.

Proof. Both inequalities are straightforward. The first follows from

‖Ua(f )− Va(f )‖L2 = ‖f ◦ ρ̃(a)−1 ·11/2
a − f ◦ ρ(a)−1‖L2

≤ ‖(f ◦ ρ̃(a)−1 − f ◦ ρ(a)−1) ·11/2
a ‖L2

+ ‖f ◦ ρ(a)−1 · (11/2
a − 1)‖L2,

using the fact that‖f ◦ ρ(a)−1‖L2 = ‖f ‖L2, by the unitarity ofV .
For the second, notice that bothf ◦ ρ̃(a)−1 and f are zero outside�, while for

(x, y) ∈ � ⊂ M × T

|f ◦ ρ̃(a)−1(x, y)− f (x, y)| = |f (ha(x, y), va(x, y))− f (ha(x, y), y)|
≤ ‖f ‖Lip · sup{distT(va(x, y), y) : (x, y) ∈ �}.

Integrating over� yields the desired conclusion. 2

The next lemma is probably well known. We include it here for the sake of
completeness.

LEMMA 5.2. For anyε > 0 there is aω > 0 such that ifdistC1(ρ, ρ̃) < ω then: given
a ρ̃-invariant set� ⊂ M × T of positive (finite) measure, there is aU -invariant function
ξ� ∈ L2(M × T, µ) which is positiveµ-a.e. on� and

‖ξ� − 1�‖L2 ≤ ε‖1�‖L2.

Proof. Let ε′ be such thatε′/(1 − ε′) < ε2. Since1a → 1 uniformly for anya ∈ 0 as
distC1(ρ, ρ̃) → 0, one can findω > 0 such that

‖Ua(1A)− 1A‖L2 =
( ∫

A

|11/2
a − 1|2 dµ

)1/2

≤ ‖11/2
a − 1‖L∞ · ‖1A‖L2 ≤ δT (ε

′)‖1A‖L2

for any ρ̃-invariant setA ⊂ M × T and alla ∈ S, provided distC1(ρ, ρ̃) < ω. Then, by
property(T ), the following holds whenever distC1(ρ, ρ̃) < ω: given aρ̃-invariant setA
of positive (finite) measure, there is aU -invariant functionξ ′

A such that supp(ξ ′
A) ⊂ A and

‖ξ ′
A − 1A‖L2 ≤ ε′‖1A‖L2. In particular,A \ supp(ξ ′

A) is a ρ̃-invariant set and

µ(A \ supp(ξ ′
A))

1/2 ≤ ‖ξ ′
A − 1A‖L2 ≤ ε′‖1A‖L2 = ε′µ(A)1/2 (5.1)

(the condition on the support can be satisfied by restricting toA theU -invariant function
provided by the property(T )).

Let�0 := �, ξ0 := ξ ′
� and define recursively�n := �n−1 \ supp(ξn−1), ξn := ξ ′

�n
as

long asµ(�n) > 0.
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Then ξ� := ∑
n≥0 ξn has the desired properties. Indeed,‖1�n‖L2 ≤ ε′‖1�n−1‖L2

by (5.1) and‖ξn‖L2 ≤ (1 + ε′)‖1�n‖L2, hence
∑
n≥0 ξn converges inL2; the limit is

U -invariant, and its support is equal to�, up to a measure-zero set. Finally,

‖ξ� − 1�‖L2 =
( ∑
n≥0

‖ξn − 1�n\�n+1‖2
L2

)1/2

≤
(∑
n≥0

‖ξn − 1�n‖2
L2

)1/2

≤
( ∑
n≥0

ε′2‖1�n‖2
L2

)1/2

≤
( ∑
n≥0

(ε′)n+1
)1/2

‖1�‖L2. 2

The main step in the proof is the following.

LEMMA 5.3. Assume the hypotheses of Theorem 3.2 hold. Fixp ≥ 1. There isε∗ > 0
such that ifdistC1(ρ, ρ̃) ≤ ε∗ then the following holds.

Let I ⊂ T be a connected set with a non-empty interior such thatρ̃ preservesM × I .
Then there is a measurable functionψ : M × I → [0,∞) such thatψ ◦ ρ̃a = ψ µ-a.e.
for eacha ∈ 0 andµ(ψ−1({λ})) ≤ µ(M × I)/p for anyλ ∈ R.

Proof. We can choose a new Riemannian structure onT such thatT coincides withT

endowed with the standard metric of volume one, and volT = µT. Note that this affects
distC0 and distC1 by at most a constant factor. We will assume from now on that this is the
original set-up of the lemma.

ReplacingI by its closure we may assume without loss of generality thatI is closed.
DenoteM × I by�. Let ` = volT(I) = µ(M × I).

Consider first the caseI 6= T. Identify� andM × [0, `], but, for simplicity, keep all
the other notation unchanged.

Let f̄ : [0, `] → [0,1] be given by

f̄ (y) =
{

2y/`, y ∈ [0, `/2],
2 − (2y/`), y ∈ [`/2, `],

and definef : M × [0, `] → R by f (x, y) = f̄ (y).
In the following we compute someL2-norms explicitly, but it would be enough to

notice to which power of̀ these are proportional; this follows from the behavior of these
quantities under rescaling.

Let a ∈ S. SinceM × [0, `] is ρ̃-invariant, for eachx ∈ M the functionva(x, · ) maps
[0, `] into itself, hence it has a fixed point. (Actually, condition (ii) of Theorem 3.2 implies
that both endpoints of the interval are fixed.) Therefore,

sup{distT(va(x, y), y) : (x, y) ∈ M × [0, `]} ≤ ‖va − pr[0,`] ‖Lip · diam([0, `])
≤ C distC1(ρ, ρ̃) · `,

whereC does not depend oñρ or I . Since suppf ∪ supp(f ◦ ρ̃(a)−1) ⊂ M × [0, `],
Lemma 5.1(b) implies that

‖f ◦ ρ̃(a)−1 − f ‖L2 ≤ C‖f ‖Lip · [distC1(ρ, ρ̃) · `] · µ(M × [0, `])1/2.
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But

‖f ‖L2 =
[
2

∫ `/2

0

(
2

`
t

)2

dt

]1/2

=
√
`

3
,

hence
‖f ◦ ρ̃(a)−1 − f ‖L2 ≤ C′‖f ‖L2 distC1(ρ, ρ̃), (5.2)

where the constantC′ does not depend oñρ or I .
In view of Lemma 5.1(a), the inequality (5.2) shows that ifI 6= T then

sup
a∈S

‖Ua(f )− f ‖L2

‖f ‖L2
→ 0 as distC1(ρ, ρ̃) → 0, independently ofI. (5.3)

If I = T then ` = 1 and we consider the functionf : � → [0,1] as above by
identifying T \ {y0} with (0,1) for some arbitrary pointy0 ∈ T. Since‖f ◦ ρ̃(a)−1 −
f ‖L∞ ≤ C′′ distC1(ρ, ρ̃) for a ∈ S, the property (5.3) is still valid.

Assume fixed small valuesε1, ε2 > 0, to be specified later. If distC1(ρ, ρ̃) is small
enough (independently of̀), then by Lemma 5.2, respectively (5.3) and the property(T ),
there areU -invariant functionsξ�, φ ∈ L2(M × T, µ) such thatξ� > 0µ-a.e. on� and

‖ξ� − 1�‖L2 ≤ ε2‖1�‖L2, (5.4)

‖f − φ‖L2 ≤ ε1‖f ‖L2. (5.5)

We can assume thatφ ≥ 0, because|φ| has the same property.
Then ψ := (φ · 1�)/ξ� is ρ̃-invariant modµ. Sinceψ is µ-a.e. preserved by

ρ̃(a0) = ρ(a0), it follows from (3) and Fubini’s theorem thatψ essentially depends only
on the second variable:ψ(x, y) = ψ̄(y), (x, y) ∈ M × [0, `] µ-a.e. We have to show that
ψ̄ is not constant on a subset ofI of too large measure.

Let λ ∈ R be such that�∗ := ψ−1({λ}) has positiveµ-measure. Since�∗ is ρ(a0)

invariant modµ, there is a measurable setI∗ ⊂ I such that�∗ = M × I∗, again modµ.
From (5.5) and the triangle inequality one obtains that

ε1‖f ‖L2 ≥ ‖φ ��∗ − f ��∗‖L2 = ‖(ψξ�) ��∗ −f ��∗‖L2

= ‖λξ� ��∗ − f ��∗‖L2 = ‖λ(ξ� ��∗ − 1�∗)− (λ · 1�∗ − f ��∗)‖L2

≥ ‖λ · 1�∗ − f ��∗‖L2 − |λ| · ‖ξ� ��∗ − 1�∗‖L2,

hence, using (5.4),

ε1‖1�‖L2 ≥ ε1‖f ‖L2 ≥ ‖λ · 1�∗ − f ��∗‖L2 − |λ| · ε2‖1�‖L2,

that is
‖λ · 1�∗ − f ��∗‖L2 ≤ (ε1 + |λ| · ε2) ‖1�‖L2. (5.6)

But

‖λ · 1�∗ − f ��∗‖L2 ≥


1

6

(
µ(�∗))
µ(�)

)3/2

‖1�‖L2, |λ| ≤ 2,

1

2
|λ|

(
µ(�∗))
µ(�)

)1/2

‖1�‖L2, |λ| ≥ 2.

(5.7)
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Indeed,
volT({y ∈ I : |λ− f̄ (y)| ≤ δ}) ≤ 2δ`,

hence

‖λ · 1�∗ − f ��∗‖L2 = ‖λ · 1I∗ − f̄ �I∗‖2
L2(I )

≥ δ2 volT(I∗ \ {|λ− f̄ | ≤ δ})
≥ δ2(volT(I∗)− 2δ`),

and the choiceδ = volT(I∗)/(4`) = µ(�∗)/(4µ(�)) yields the estimate for the case
|λ| ≤ 2. The other case is straightforward.

It is clear that forε1 andε2 chosen small enough, the inequalities (5.6) and (5.7) cannot
be satisfied simultaneously ifµ(�∗)/µ(�) ≥ 1/p. 2

Proof of Theorem 3.2.Chooseρ̃ such that distC1(ρ, ρ̃) ≤ ε∗, whereε∗ is given by
Lemma 5.3 forp = 2.

Let B := {y ∈ T : ρ̃a(My) 6= My for somea ∈ 0}. Sinceρ̃ acts through continuous
maps,B is an open set. IfB = ∅, we are done. AssumeB is non-void.

The complement ofM × B is ρ̃-invariant, hence so isM × B. Let I ⊂ T be one of
the connected components ofB. ThenM × I is ρ̃-invariant because, by condition (ii) of
Theorem 3.2,∪{ρ̃a(M × I) : a ∈ 0} ⊂ M × B is connected and containsM × I . Let
ψ : M × I → R be the function provided by Lemma 5.3. We will show that there is a
connected open non-void setJ0 ⊂ I such thatψ is µ-a.e. constant onM × J0. Taking
the union of all the connected open setsJ ⊂ I that have this property and containJ0, we
deduce that there is a maximal open connected setJ∗ ⊂ I such thatψ is µ-a.e. constant
onM × J∗.

But thenM × J∗ is ρ̃-invariant modµ. Indeed, consider the opeñρ-invariant set
� = ∪{ρ̃a(M × J∗) : a ∈ 0} ⊃ M × J∗. By (ii), � is connected. Then conditions
(3) and (i) imply that� = M ×T0 modµ for some open and connected setT0 ⊂ T. Since
ψ is ρ̃-invariant,ψ �� is constantµ-a.e. Thus, by the maximality ofJ∗, we conclude that
T0 = J∗, i.e. that̃ρa(M × J∗) = M × J∗ modµ for all a ∈ 0, as claimed.

In particular, the boundary ofM × J∗ is ρ̃-invariant. SinceµT(J∗) ≤ µT(I)/2 by
Lemma 5.3, there is a pointy ′ ∈ I ∩ ∂J∗. But then (ii) implies thatMy ′ is ρ̃-invariant,
contradicting the connectedness ofI .

It remains to show that given a measurable functionψ supported on ãρ-invariant set
M×I where∅ 6= I ⊂ B is open, connected and such thatψ ◦ ρ̃a = ψ µ-a.e. for alla ∈ 0,
there is an open connected setJ0 ⊂ I such thatψ isµ-a.e. constant onM × J0.

Notice first that in view of the conditions (3) and (i) of Theorem 3.2, by changingψ on
aµ-null set we may assume thatψ(x, y) = ψ̄(y) for any(x, y) ∈ M× I . Moreover, there
is a setZ ⊂ M × I of full measure such that for anya ∈ 0:

ρ̃a(Z) = Z,

ψ(ρ̃a(z)) = ψ(z), for all z ∈ Z
(letAb := {z ∈ M × I : ψ(z) 6= ψ(ρ̃b(z)} and takeZ := M × I \ ∪{ρ̃a(Ab) : a, b ∈ 0}).
Pick y ∈ I such thatZy := My ∩ Z has fullµy-measure inMy anda ∈ 0 such that
ρ̃a(My) 6= My . Thenψ is constant oñρa(Zy), henceψ̄ is constant onJ ′

0 := prT(ρ̃a(Zy)),
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which implies thatψ is constant onM × J ′
0. We will show thatJ ′

0 coincides modµT with
the connected set̄J0 := prT(ρ̃a(My)).

Indeed, letγ : [0,1] → My be aC1 curve such that prT ρa(γ ([0,1])) = J̄0. By Sard’s
theorem, a.e. point of̄J0 is a regular value for the mapping prT ◦ρa ◦ γ : [0,1] → J̄0.
Assume by contradiction that̄J0 \ J ′

0 has positive measure inT and lety∗ ∈ J̄0 \ J ′
0 be a

density point which is also a regular value for prT ◦ρ̃a ◦ γ . Let t∗ ∈ [0,1] be a preimage
of y∗ andx∗ := γ (t∗) ∈ My . Thent∗ is a density point ofA := γ−1(My \ Zy) ⊂ [0,1].

Sincex∗ is a regular point for prT ◦ρ̃a, there is a neighborhoodO of x∗ inMy such that
O1 := {x ∈ O : prT ◦ρ̃a(x) = y∗} is a codimension-one submanifold ofMy . Moreover, by
the inverse mapping theorem, for someδ > 0 and possibly after shrinkingO andO1, one
can choose aroundx∗ local coordinates given by aC1-map8 : O1 × (t∗ − δ, t∗ + δ) → O

such that ifx ∈ O and|t − t∗| < δ then

prT(ρa(x)) = prT(ρa(γ (t))) ⇐⇒ x ∈ 8(O1 × {t}).
Therefore,8(O1 × {t ∈ A : |t − t∗| < δ}) ⊂ My \Zy . Since8 is a local diffeomorphism,
the left-hand side has a positiveµy -measure, which contradicts our choice ofy. 2
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