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Abstract We prove certain rigidity properties of higher-rank abelian product actions of the
typea x ldy : Z* — Diff (M x N), wherea is (TNS (i.e. is hyperbolic and has some
special structure of its stable distributions). Together with a result about product actions
of property(7T) groups, this implies the local rigidity of higher-rank lattice actions of the
forma x Idy : T' — Diff (M x T), provideda has some rigidity properties itself, and
contains a8 TNS subaction.

1. Introduction
This paper is a contribution to the rigidity program initiated by Zimnr [

The goal of the program is to classify the smooth actions of higher-rank semi-simple Lie
groups and of their (irreducible) lattices on compact manifolds. It was expected that any
such lattice action that preserves a smooth volume form aedy@liccan be reduced to
one of the following standard models: isometric actions, linear actions on nilmanifolds, and
left translations on compact homogeneous spaces. This original conjecture was disproved
by Katok and Lewis (seeK[L2]): by blowing up a linear nilmanifold-action at some fixed
points they exhibit real-analytic, volume-preserving, ergodic lattice actions on manifolds
with complicated topology.

Nevertheless, imposing additional assumptions on the action, for example, some
hyperbolicity, allows for global classification results. The existence of an Anosov element
in the action is used iNLZ ] to give a global classification of Sk, Z) actions oril” that
preserve an absolutely continuous probability measure. Other global classification results
for Anosov actions can be found iG]

Much work was also done to study perturbations of higher-rank lattices and Lie groups
actions (seeHl, KL1, KL2, KLZ, KS2, MQ, QY1, QY2 ]). In many of these papers, the
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existence of an Anosov element, respectively of a spanning family of directions that are
hyperbolic for certain elements of the action, was essential. A first attempt to study the
deformation rigidity of partially hyperbolic product actions that contain a compact factor
was carried out inNIT1].

Notation. (1) Unless specified otherwise, we assume that all manifolds and maps are
smooth.

By C*¥~ we denote the class of functions that &k for anye > 0. TheC*~-topology
stands for the coarsest topology for which the inclusiéhs ¢ C*—¢ are continuous for
eache > 0. However, byl we meanc?l.

(2) Throughout this paper by @ -laminationwe mean a topological foliation whose
leaves are”” -submanifolds that vary continuously in tB&-topology.

Definition. Let T be a finitely generated discrete grould, a compact manifold, and
@, 5: ' x M — M C®-actions. Fix a finite set of generatdsg} of I'. We say thap is
CL-closeto 5 if the C*°-diffeomorphisms (y;) andq?(y,») are close in th€ L -topology for
alli. A CL-perturbationof the actionp is aC>-actionC~-close top. A CL-deformation
of the actiong is a CL-continuous path o >-actionsg;, 0 < t < 1, with ¢g = ¢.
An action ¢ is said to beC’-X-locally rigid if any CL-perturbation of¢ contained in
a sufficiently smallC-neighborhood of is conjugated tap by a CX-diffeomorphism
which is C-close to the identity. An actiog is said to beC - X -deformation rigidif any
CL-deformation ofp contained in a sufficiently smait’-neighborhood o is conjugated
to ¢ by a continuous path af ¥ -diffeomorphismg°-close to the identity.

We are interested in rigidity results for partially hyperbolic actions that have a trivial
factor. Deformation rigidityresults were obtained ifN[T1]. The main goal of this paper is
to prove thdocal rigidity of certain actions of this type.

Let = be the standard linear action of @l,.Z) on then-dimensional torud™. The
holonomy considerations used in this paper lead to the following improvement upon the
main result of NT1] (see the end of 84 for the proof).

THEOREM1.1. Letn > 3 andd > 1 be integers. Lep be the action oSL(n, Z) on
T*td = T x T given byp(A)(x, y) = (m(A)x,y), x € T",y € T¢, A € SL(n, Z).
Then, for any integek > 1, the actionp is C>X ™ -deformation rigid.

One special case of our new result is a strengthening of Theorem 1.1 when the fibers
are one-dimensional (see the proof after that of Theorem 3.3).

THEOREM1.2. LetI" C SL(n, Z) be a subgroup of finite index and letoe the action of
I onT* = T” x T given byp(A)(x, y) = (m(A)x,y),x € T",y € T, A € I'. Then,
for n > 3and any integek > 1, the actionp is C2X™ -locally rigid.

More examples are given in Corollary 3.4 and the remarks following it.

The main part of Theorem 1.1, proved NT1], is based on three results in hyperbolic
dynamics: a generalization of Livsic’s cohomological results to cocycles with values in
diffeomorphism groups, a non-commutative version of the Anosov closing lemma, and a
version of the Hirsch—Pugh—Shub structural stability theorem.



Local rigidity of certain partially hyperbolic actions 1215

Note that Theorem 1.2 does not imply that the acjiois C>>-locally rigid because
the size of theC?-neighborhood guaranteed by the theorem depend& oThe main
ingredients of the proof are two rigidity results: one conceifldS abelian actions,
the other actions of propert§F) groups. This approach obtains the rigidity of partially-
hyperbolic actions of product type from the (known) rigidity of hyperbolic actions.

It has been noticed for some time that many Anosov actions of abelian groups display an
array of rigidity properties. The vanishing of the first cohomology groups with coefficients
in R" was noticed for the first time iNK[S1]. This result is extended to cohomology
groups with coefficients in a matrix Lie group iKINT]. Local and global rigidity results
for abelian Anosov actions are proved KiL[1 ] and [KS2].

As a consequence of the Hirsch—Pugh—Shub structural stability theoren&8jegnd
Theorem 2.1), small perturbations of abelian partially hyperbolic actions of product type
are conjugated to skew products of abelian Anosov actions by cocycles with coefficients in
diffeomorphism groups. Given the previous results, it is natural to expect certain rigidity
phenomenato appear for these actions as well.

A basic fact proved in this paper is that for certain higher-rank abelian partially
hyperbolic actions of product type, the sum of the stable and unstable distributions of
any regular element of the perturbation is integrable. In view of the situation for Lie group
valued cocycles (se&KNT]), one might expect the leaves of the integral lamination to
be closed manifolds covering the base simply, thus obtaining a conjugacy between the
perturbation and a product action. This amounts to showing that the only small solutions
of a particular system of equations in Diff (or Homeo), determined by the holonomy of
the integral lamination, are the trivial ones. We obtain the above-mentioned conclusion
under the supplementary assumption that some regular element of the perturbation has
a pointwise fixed center leaf. It is not clear to us how to remove this additional
assumption.

Namely, one has to deal with the following question.

Question.Let T : M — M be an Anosov diffeomorphism on the compact manifdd

Let N be a compact manifold angl a partially hyperbolic diffeomorphism off x N
which is C1-close toT x Idy. Assume that the stable and unstable foliationg aire
jointly integrable. Does it follow that the diffeomorphisfnis conjugated t@” x S, where

S € HomedN)? That is, does the foliation integrating the stable and unstable foliations
of f have closed leaves?

Theorem 1.2 is obtained as follows. Consider first the restriction of the agtiora
diagonalizable abelian subgroup of rank- 1 of I'. The existence of a pointwise fixed
center fiber is ensured by a theorem of Sto®#. [ St3, first used in this context by Hurder
[H]. Applying the rigidity result to this abelian action, we obtain a conjugacy between the
original abelian action and its perturbation. Using the prop€my, we show that this
conjugacy reduces thé-action to a family of perturbations of hyperbolic actions.

This paper has the following structure: in §2 we recall a few facts from the theory of
partially hyperbolic diffeomorphisms and the definition ofldNS action, respectively of
property(T). In 83 we present the main results, and in §84 and 5 we give the proofs.
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2. Preliminaries
We recall first the definition of a partially hyperbolic diffeomorphism.

If T is a linear transformation between two normed linear spaces, the norm and the
conorm ofT are defined by

ITIl = suplTvl; vl =1} and m(T) =inf{|Tvl; vl = 1}.

Let X be a compact, connected, boundaryless manifoldC*Adiffeomorphismy :
X — X is called partially hyperbolic if the derivativEf : TX — T X leaves invariant
a continuous splitting X = E* @ E¢ & E*, ES # 0 # E*, such that, with respect to a
fixed Riemannian metric ofi X, T f expandsE®, Tf contractsE®, and the inequalities

1T < m(TSf),  NTSf | < m(TEf)

are true for allp € X. If the center bundle£® = 0, then f is called an Anosov (or
hyperbolic) diffeomorphism.

Assume that the partially hyperboli€”-diffeomorphism f leaves invariant aC*-
lamination£ tangent to the central directiafi°. We say thatf is r-normally hyperbolic
atLifforall p € X and 0< k < r one has

m(Thf) > TS FIF and (T3] < m(TEf).

The partially hyperbolic diffeomorphisnf is said to satisfy the'th-order center-
bunching conditiong forall p € X and 0< ¢ < r

T3 FINTS F1C < m(Tsf) and (T5 fIl < m(Ty fym(Ty f)".

We recall the results oH{PS, Theorems 6.1, 6.8, 7.1, 7.2] and§W, Theorem B]
about partially hyperboliZ-actions and their small perturbations. We describe only the
case that will be of interest in the following, and skip the description of the terms that are
self-explanatory. In the case of hyperbolic diffeomorphisms, we have the classical results
of Anosov [A]. See also the Remark following Theorem 2.1.

THEOREM2.1. (HPS)]) Let X be a compact manifold ang € Diff "(X), r > 1, a
diffeomorphism which is-normally hyperbolic at aC”-lamination £ s having compact
leaves.

(1) Through each leaf of ; there exists & center-stablenanifold. The center-stable
manifold throughx € X consists of those points whose forwafebrbit does not
stray away from the orbit of /(x). Hence, since the leaves of the laminatibnare
compact, each center-stable manifold is a union of center leaves; the center-stable
manifolds form theenter-stabléamination W< (). A similar statement holds for
thecenter-unstablmination, W< ( f).

(2) There exists aC" stable laminationW* (f) whose leaves lie in those & (f).

The points of a stable leaf are characterized by sharp forward asymptoticity. If
satisfies thér — 1)th order center-bunching conditions, then the stable distribution
is C"~1 on each center-stable leaf. In particular, the holonomy maps determined by
the stable lamination inside the center-stable leaves@rel. A similar statement
holds for theunstabldamination, W ( f).
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(3) If g € Diff"(X) is Cl-close tof, theng is r-normally hyperbolic at a uniqué”-
laminationL,, and the stable, unstable, and center laminationg cbnverge inC”
to those off asg convergestqg in theC”-topology. The stable (unstable) holonomy
maps within the center-stable (respectively, center-unstable) leaygesariverge in
C" 1 to those off, asg converges irC” to f.

(4) Moreover, ifL; is a C”-foliation, then in the case (3) there existseaf-conjugacy
H e HomedX) between(f, L) and(g, £,): H maps the leaves df to those of
LgandL,(H o f(x)) = L4(g o H(x)). H is aC"-diffeomorphism of each leaf of
L ¢ onto its image, varying continuously & with the leaf. Forx € X, L (H (x))
is uniquely characterized by the fact that gsorbit does not stray away from the
f-orbit of L¢(x). Modulo the choice of a normal bundle 1y, H is uniquely
determined. I§ converges tgf in the C"-topology thenH converges to the identity
in the C”-topology along the leaves df; and toldy in C°.

Here ‘never strays away means that'(L,(H(x))) stays within a tubular
neighborhood of predetermined small sizef6tL ¢ (x)), for eachn € Z.

Remark.The statement in (2) about the smoothness of the stable distribution along the
leaves ofW** follows from the C”-section theoremHPS, Theorem 3.5] (applied in this

case for(r — 1)). The compactness of the base space can be replaced by the appropriate
uniformities. The continuous dependence of these holonomies described in (3) follows
from a straightforward generalization of the similar continuity contained irCthsection
theorem. Theorem B offSW] proves that the holonomy d¥* inside W< is C"~1 under

milder conditions.

The crucial property on which the rigidity results for abelian actions are based is that of
a (TNS action, introduced by Katok (se&INT]).

Definition. Leto : A x X — X be an action ofA = Z* on a compact manifold. We

say that the action is totally non-symplecticor (TNS), if there is a familys of partially

hyperbolic elements it and a continuous splitting of the tangent bunfil§ = @leEi

into A-invariant distributions such that:

(i) the stable and unstable distributions of any elemerf are direct sums of a sub-
family of the E;’s;

(i) any two distributionsE; andE;, 1 < i, j < £, are included in the stable distribution
of some element if§.

Remarks.(1) It is easy to see that given(@N9S action, one can assume thf&iconsists
only of Anosov elements.

(2) Given a(TNS action described bys < A with all elements ofS Anosov
and a splittingT X = @f:lE,-, one can replace the distributiofig;} by the non-zero
intersectiong ), E°@(a), whereo (a) € {u,s}. Indeed, denote the new splitting by
TX = @f:lF,-. It obviously satisfies (i), and (ii) can be checked as follows: gi¥en
andF;, there are 1< i’, j' < ¢ such thatt;y C F; andE; C F; anda € S such that
E;, Ej C E*(a);, thenF;, F; C E*(a), by the choice of the new splitting.

(3) If the actione is linear, andL; : Z — R are its Lyapunov exponents (i.e. the
logarithms of the absolute values of the eigenvalues of the matrix corresponding to the
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derivative of the action; se&B3]), then the(TNS property can be characterized by:
if L; = cL; for some constant, thenc > 0.

In the following we will use the splitting given by Remark (2) above. Note that it is
given by integrable distributions. We call the corresponding laminatigngnal

Several examples afTNS actions are presented iKINT, 87]. We also discuss an
example in 83 of this paper, after Corollary 3.4.

Call an element € A regularif «(a) is hyperbolic.

Recall the definition of Kazhdan’s propelty) (see Proposition 1.14 irHV]).

Definition. A discrete groud” has theproperty (7)) if there exists a finite sef ¢ I and
8 > 0 such that any unitary representation: ' — U/ (H) that has a non-zer@, S)-
invariant vector has a non-zero invariant vector as well. (A vectorH is (8, S)-invariant
if lr(@)& — &Il <él&ll foralla € S.)

Finally, we introduce one more piece of notation, motivated by the examples we are
going to consider.

Notation. Given a partially hyperbolic diffeomorphism, byterizontal lamination we
mean aC-lamination whose leaves are transverse to the center distribution. In particular,
by thehorizontal foliationof a product actiorr x Idy on M x N we mean the foliation

with leavesM x {y}, y € N.

3. Results
To state our results in full generality we need the following definition.

Definition. Let I" be a discrete groupgyf a compact manifoldk, L > 1, ande : I’ —
Diff (M) an action. The actiom is called continuoushCX-X-locally rigid if it is
cL-K-jocally rigid, and the conjugacy varies continuously in tife topology when the
perturbation varies continuously within a compact set in@Rdopology, for 1< k < K.

Examples of continuously locally rigid actions are described before Corollary 3.4.

It is not hard to see that ‘bounde@™ X -local rigidity implies continuoug'*-X -local
rigidity. We do not know, however, whether either of them are implied’yX -local
rigidity.

The two main results of this paper are the following.

THEOREM3.1l. Let A = Z* (« = 2), M = T™, N be a compact manifold and
o : A — Diff ¥*1(M) be a(TNS action, wherek > 0 is fixed. Considep : A —
Diff +1(M x N) given byp(a) := a(a) x Idy.

(a) Any CX+tlaction 5 that is C1-close top has an invariant horizontal laminatiof(
which hasC(K+D™ |eaves and” X -holonomy between the center leaveg.oThe closeness
depends o6k + 1)-normal hyperbolicity and th-order center-bunching. Asconverges
to p in CK+1, 1 converges té¢ in C’+D™ and the holonomy converges uniformlyrf
to the identity on each center leaf.

(b) Assume, moreover, that for some regular elerneatA there is a center leaf which
is pointwise fixed by(a). Then, forg C1-close enough te, there is a homomorphism
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7 : A — Diff K(N) such thatg is conjugated to the product actian x 7 by a map
h € HomedM x N):

p(d) = h(a(d), n@)Nh™2, da €A

h(x, -)is aCck-diffeomorphism onto its image for eaghe M and varies continuously in
CK with x. The laminatiorf{ is the image through of the invariant horizontal foliation
H of p. If § converges te in C1, thenh converges tdd .y in CO.

(c) Let K > 1 and assume that the acti@nis continuouslyC’ X -locally rigid for
someK + 1 > L > 1. If the conditions of (b) holdp is Ct-close top, and the
corresponding homomorphism : A — Diff X(N) is trivial (i.e. # conjugatess and
o), theni(-,y): M — M x N is CK and varies continuously ia’®* ~ with y. Hence, by
Jourré’s theorem (see Theorem 4.5)e Diff & (M x N). If 5 converges te in Ct+1
thenh converges tady . n in CL.

Remark.Given aCcX+1 cocycleg : A x M — Diff ¥+1(N) over the actiony, one can
construct a skew-product actigh: A — Diff *1(M x N) by

pla)(x,y) = (a(a), B(a, x)(y)), wherex e M,y e N.

The conclusion of Theorem 3.1(b) is equivalent to the fact that the coggcle
cohomologous to a constant cocycle. Hence, under the additional assumption that the
skew-product has a regular element that pointwise fixes a center fiber, we extend to
cocycles with values in diffeomorphism groups the results obtaineiNiT[] for cocycles

with values in Lie groups.

THEOREM3.2. LetT" be a discrete group with properyf’) acting through act-action

ponM x T, whereM is a compact connected Riemannian manifold. [Lée a smooth

probability measure whose supportiig x T. Assume that:

(1) p preservesu;

(2) ppreserveseachsdf, := M x {y},y € T,

(3) thereis an elementy € I" such thatp(ao) is ergodic (with respect to the measure
induced byu) on each sed/,, y € T.

Then any actiord : I' — Diff (M x T) which isC1-close top and satisfies:

()  plao) = p(ao);

(i) pl@My)NM,#@forala el andy € T;

preserves each séf,.

Remark.One can replac®& by R, as can be seen from the proof. However, in that case,
more care is needed in the definition of #i&-closeness. If the fiber is non-compact it is
enough that the measugebe locally finite.

Using these, one obtains the following:

THEOREM3.3. Fix K, L > 1. LetI" be a discrete group with property") andae a smooth

action of I on a torusM = T™ such that:

(1) « has a periodic poinkg € M (i.e. thexa-orbit of xg is finite); denote its stabilizer
byl'g C T;
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(2) «[r, contains aTNS abelian actionxo;

(3) «[r, preserves an absolutely continuous probability measwth supporti;

(4) the(TNS abelian actionug is continuouslyC X -locally rigid;

(5) alp,isCL C-locally rigid.

(6) HY(To, Viep), the first cohomology group 6, is trivial for any finite-dimensional
representatiomep: I'o — GL(V).

Then the actiorp := « x ldp of ' on M x T is CLV2X™ _|ocally rigid, wherea v b =

maxa, b}.

Remarks.

(1) By [LS] and LMM], the « [ -invariant absolutely continuous measuve
introduced in (3) is automatically smooth.

(2) Conditions (4) and (5) of Theorem 3.3 can be replaced by:
(4) the(TNS abelian action is continuouslyC” " --locally rigid;
(5) «lr, is continuoushyC* X -locally rigid.

Proof of Theorem 3.3Let 5 be aCV2-small perturbation op.

We first prove thatp [, is conjugated top [, through a diffeomorphisnko €
Diff £ (M x T) which isC*-close to the identity. We then show that the diffeomorphism
ho actually conjugateg to p on the whole group. This last argument might be well known,
we include it here for the sake of completeness.

By (1), p(T'0) has a pointwise fixed center leaf. One concludes from the theorem of
Stowe [Btl, St3 and assumption (6) that there is a pointwise fixed center legf(Dg).

Denote byA C T'g the abelian group that induces thENS actionag and by oo, po,
the restriction ofo, respectivelys, to A. Applying Theorem 3.1(c) to the actigm, one
obtains aCt-small CX~ conjugacyhg betweengy and pg, which is CL™ -small on each
horizontal leaf ofog.

Since g contains Anosov diffeomorphisms and any Anosov diffeomorphism that
preserves a smooth measure is ergodic, it follows that we can apply Theorem 3.2 to the
actionp [, and its perturbatio [,, wherep := hgo p o hal, by takingu to be the
product of the smooth measureand the Lebesgue measure®n

Thereforep [, preserves each s8f, := M x {y}, y € T. Using assumption (5), it
follows that for eachy € T, the restriction(s [,)y of p [, to the setM, is conjugated to
the actiono [, through a homeomorphisiy which isCO-close to Id,. But the Anosov
actions [ 4 and(p [ 4), coincide, hencé, is in the centralizer ok [ 4, which is discrete
(see PY]). Thush, has to be the identity, and therefqré, = g o p o hal ITo-

Next, we show that ifig o p o hal 'ty = 0 I, ON @ subgroup of finite indeko C T,
wherep = a x Idy andhg € Diff 1(M x T) is C%-close to the identity, thelgo o/t = p
onT as well. The only property we need is that there is an elemgatl'g such thatr(yp)
is Anosov; the fact that the center leaf is one-dimensional is not relevant.

Without loss of generality, we may assume tfigtis a normal subgroup. Denote
hoo B ohgt by p, as before.

Letg € I'. Thengyog ™" € o, and thuso(gyog ™) = f(gyog ™) = A()p(ro)d(g ™)
preserves each subsét, y € T. Thereforep(yo) preserves each sptgHM,, y e T,
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g € I'. However, each of these sets i€&manifold which is not far fromM, (at least,
on a family of generators df). The only such invariant manifolds have to contain the
stable and unstable manifolds pfyo) (see, e.g., the proof of Lemma 4.1) and therefore
must coincide withM,, for somey’ € T. This means that there is a homomorphism
® : I' > HomedT) with the property thap(g)My = Mo, (y), ® I, = ldr, and® is
CO-close to the identity. Then Theorem 4.7 implies tbat Id onT.

Denote, as before, by, the restriction of to My, y € T. Foranyg € T,

a(@a(yo)a(@) ™t = py(gvog ™) = py(grog ™) = py(&)a(0)hy(9) 7L,

therefore p, (g) ta(g) € HomedT) commutes witha(yg), which is an Anosov
diffeomorphism. The same argument as above showsﬁ;mgrla(g) = ldt on a family
of generators, heng® (g) = a(g) forallg e T. O

Proof of Theorem 1.2An example of action satisfying the assumptions of Theorem 3.3
is the standard linear action of on T", n > 3, whereI is a subgroup of finite index

in SL(n,7Z). Indeed, by a theorem of Prasad and RaghunatkR&, [I" intersects a
conjugate of a giveiR-split Cartan subgroup of Sk, R) in a uniform lattice. Hence, the
intersection consists of commuting matrices which generg#eN& action onT”. Take

L = 1. Condition (4) follows fromKL1 ], condition (5) from KLZ ], and condition (6) is

a corollary of Theorem 2.1 irMar]. Thus Theorem 1.2 is a corollary of Theorem 313.

Katok and Spatzier have shown in a recent paki&2] that if «g is an algebraic Anosov
action of Z*, k > 2, acting on an infranilmanifold with semisimple linear part such
that no non-trivial element of the group has roots of unity as eigenvalues in the induced
representation on the abelianization, tagrs C1-*°-locally rigid. Continuity of this local
rigidity follows from the proof. In the same paper, they prove He>®-local rigidity of
linear Anosov actions of irreducible lattices in linear semisimple Lie graupB of whose
factors have real rank at least two. Moreover, for such a lattice action, there is a maximal
abelianR-split subgroup whose action on the abelianization satisfies the above conditions.

Hence, one has the following.

COROLLARY 3.4. LetT" be an irreducible lattice in a linear semisimple Lie groGpall
of whose factors have real rank at least twox If ' — Diff *°(T™) is a linear action that
contains a(TNS subaction, ther x Idy is C%X™ -locally rigid, for any K > 1.

By the aforementioned theorem of Prasad and Raghunathan and Remark (3) following
the definition of the(TNS property, given a lattic& in a semisimple Lie grougs, the
existence of aTNS subaction of a linear actioa : I' — Diff (T") coming from a
representatiomr : G — SL(m, Z) can be decided by computing the weightsmobn an
R-split Cartan subgroup af. The irreducible representations of @L.R) are described
by Young tableaus. For example, fer> 3 and 1< k < n — 1, the representations
corresponding to the tableaus with one column of hetgit n/2, or two equal columns
of heightk # n/4,n/3,n/2,2n/3,3n/4, or one line of lengtht < n/2 contain a(TNS
sub-representation. However, for each given semisimple Lie group, only finitely many
irreducible representations do so.
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4. The(TNS property
In this section we prove Theorem 3.1.

Notice first that given a small perturbatignof the .A-action p and a fixed regular
elementa € A, the center lamination of, is preserved by, hence it is the center
lamination of each regular partially hyperbolic diffeomorphigm » € A. Moreover,
the leaf-wise conjugacf, of Theorem 2.1(4) betwees), andp, is a leaf-wise conjugacy
for each suclp;,.

Indeed, denote by the center foliation ofp, and byZ that of p,. Then, by
Theorem 2.1(4) forany,& € M x N:

n e Z(Ha(é)) <= pun(n) never strays away fromy (L(£)).

Pick a finite family of regular generators gf, and leth be one element of this family.
Then, foré§ € M x N, pp(pan (Ha(§))) is close toop (pqn (L(£))), uniformly with respect
ton € Z. Sincep, preserved, this means thab,- (o, (H,(£))) never strays away from
par (L(pp(€))). Thereforepy,(H, (8)) € L(H,(pp(£))), which shows thaf, preserves’
andH, is a leaf-wise conjugacy betweépy, Z) and(pp, £). The claim now follows from
the uniqueness parts of (3) and (4) in Theorem 2.1.

Assume the minimal laminations afare given by

Fi=(W@. SScScAiel
acs;
HenceS; N S; # ¢ for anyi, j € I, by the(TNS property. We can also assume that each
a(a),a € S, is hyperbolic.
Let 5 beCl-close top = « x Id, so that Theorem 2.1 can be appliedfoe K + 1.
Fori € I andb € S; consider the lamination

FO = ( () we (a‘)) (W @), (4.1)
acs;

wherea stands forfs(a). By Theorem 2.1, the above lamination l&§*1 leaves, and its

holonomy within .. W< @) is CX.

ae&
LEMMA 4.1. If a, b € S; thenF@ = F").

Proof. By the unique integrability of these laminations, it is enough to deal with their
tangent distributions. Since the action is abelian, the splitthgel x N) = ES(a) @&
E¢® E"(ad) = ES(b) ® E° ® E"(b) are A-invariant. We claim that
ES @) NE®S(h) = EC@[ES@) N E*D)]. (4.2)
This clearly implies that
ES(@) N[E® @) N ES ()] = E*B) N[E® @) N ES (D) = ES@) NES (D),
from which the desired conclusion follows.

To prove (4.2),leE ¢ M x N andv € Eg‘ @n Eg‘ (b). Thenv = vo+ vy = vy + vp,
with vo, vy € E€, v, € E*@), v, € E*(b). If vo = v, we are done. Otherwise, let
w = v, = (Vo —vy) + Vg € Eg(b). Asn — o0, wy, = (alw)/||a?w]| approaches unit
vectors inE¢, while staying inE* (b). However, the angle between the distributidigb)
andE* is bounded away from zero, a contradiction. |
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By Lemma 4.1, one can denofé“), acs; by]f',». Moreover,
Fi= ) Wa@.

acs;
Definition. Let X be a (compact) Riemannian manifold aficandg two C1-laminations
of X.
(a) Givens > 0, by the local leaf of sizé at x of F, denotedF(x, §), we mean the
connected component ofin F(x) N {y € X : disty(x, y) < §}.
(b) We say that the laminatiorfs andG arenon-tangenif

inf Z(TyF, TyG) > 0.
xeX

More generally, a familyF;}; of C1-laminations igointly non-tangentf
inf /(T F;, span{TF;: j #i}) >0, foreach.
xeX

(c) We say that the non-tangent laminatiafisand G commute locallyif there are
8,& > O such that forany € X, y € F(x,48), andz € G(x,d), there is exactly one
pointin F(z, &) N G(y, €).

Remarks.Assume thatF andgG are two non-tangent locally commutig-laminations
of a compact manifold.
(1) The following strengthening of the commutativity property holds:

there are’, ¢, A > 0 such that for any € X, y € F(x, §)
andz € G(x, 8), the pointw = F(z, ) N G(y, ¢) satisfies (4.3)
disty (x, w) < Amaxdisty (x, y), disty (x, 2)}.

(2) Given two pointsc andy in a leaf ofG and a patty in the leaf connecting them, one
can define th&/-holonomy alongy between neighborhoods efin F(x) andy in F(y).
This holonomy is a local homeomorphism. (This follows from local commutation for short
y. In general, decomposeinto short segments.)

LEMMA 4.2. For eachi, j € I, the Iaminations?f‘,- and]f‘j commute locally.

Remark.This is the only place where it is important thidtis a torus. In this case any pair

of minimal laminations of« commute locally. Using the fact thatis a small perturbation

of a product map, and the structural stability of partially hyperbolic diffeomorphisms, we
show that this property can be lifted to the laminatidnis

Proof of Lemma 4.2By the remarks at the beginning of this section, there is a
homeomorphisnH € HomedM x N), which is CX+1 in the N-direction and induces
a leaf-wise conjugacy between the center laminations ahdg. SinceW<® (p(a)) =
WS (a(a)) x N, hence the center-stable leaveswofire spanned by center leaves, one
concludes from the characterization of Theorem 2.1 #iadlso takes the center-stable
laminations ofp into those ofp.

By [F] and M], the action« is conjugated through adfder homeomorphism to a
linear actionxg. Via this conjugation, stable leaves are mapped to stable leaves. Since the
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stable laminations aig areaffine(i.e. given by translations of linear subspaces; recall that
M = T™), the lamination$F;} correspond through this conjugacy to affine foliations, and
clearly any two affine foliations on a torus commute locally. We conclude that any two of
the laminationd F;} commute locally as well. Lelg, 9, and Ag be constants given by
(4.3), chosen to be correct for any pdirand7; (i, j € I).

GivenasubseB C M x N, letus denote bW ¢(B), respectiveI)WC(B), its saturation
with respect to the center lamination @frespectivelyp:

WE(B) := U{W(£) : &€ € B}, WC(B):=U{W(£):£ e B).

Note thatW<(B) = H(W¢(H1(B))).

leti,j € I, € € MxN, n € Fi(£,68), ¢ € F;(£,8). We want to show that
Fi(¢,e) N F;(n, &) has exactly one element. (The valuesscdnde will be specified
later.)

Consider the saturation U§7€ of the above sets. In view of the definition (4.1) of the
laminationsZ;, there are numbe#, 8", ¢/, ¢”, 8, 8", &, & > 0 (depending o, 1, ¢, 5,
ande) such that

Fi(x,8') x N € H-X(We(Fi(£, 8) C Fi(x,8) x N,
Fi(x,8") x N c H"XWe(F;(£,6) C Fj(x,8") x N,
Fi(z, &) x N C HTY(We(Fi(¢, ) C Fi(z, &) x N,
Fi(y.e") x N ¢ H-YWe(F;(n, ¢))) € Fj(v,&") x N,
wherex = pry,(H™1(§)), y = pry(H ') € Fi(x,8"), andz = pry(H X)) €
Fj(x,8"). (Here py, stands for the projectioW x N — M.) Since the laminationisF; }

converge inC! to {F;} asp — p in €1 and H*! are uniformly continuous, for eagh
C!-close top one can first choose> 0 such that

O<er:= min {¢,¢"} < max {&,8"} <eg
n,LEMXN n.LeMxN
and thers > 0 such that
- - . £1
max {§’,8"} < min{8g, ——— }.
EeMxN{ b= { 0 A0+1}

See Figure 1 for what follows.
ThereforeF;(z, ') N F;(y, ¢”) contains exactly one element, hence

We(Fi (¢, €) N We(Fj(n, €)) = HH XWe(Fi (¢, £)) N H-XWe(F;(n, £))))
= H((Fi(z,€) x N) N (Fj(y,€") x N))

consists of exactly one leaf &<, sayL§. Lett’ := Fi (¢, e)NLS andt” := F;(n, &) NLG
(these intersections contain at most one pointgfemall enough).

Picka € §;NS;. Thent’, " € W* (¢, d, 5+s)ﬂ£~:6. Since the last intersection consists
of a single point fos + ¢ small enough, we conclude that= t”. O

The (TNS-property is necessary only to obtain Lemma 4.2. One could then prove the
following independent result.
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FIGURE 1.

THEOREM4.3. Given a family{G;} of C-laminations on a compact manifold which are
jointly non-tangent and pairwise commute locally, there §*alaminationG spanned by
them. If the initial laminations ar€*, theng is C¥" .

However, in our case we can take advantage of the facihiata torus to simplify the
proof.

LEMMA 4.4. Leta € A be a regular element. 1§ is C-close top, then W* (@) and
W (a) commute locally (recall that stands forp (a)).

Proof. AssumeW* (@) = spaniF; : i € I°(a)} and W*@) = spaiF; : i € I'(a)},

wherel*(a) = {ix : 1 < k < S}and!*(a) = {jkx : 1 < k < U} form a partition
of I. We claim that for any1 > 0 there is a3, > 0 such that, fot € M x N,

each pointy € W*(&,4d,§,), respectivelyt € W"(§,4d, 8,), can be reached from by

juxtaposing segments of lengths at mysbf the lamination$7; : i € I°(a)}, respectively
{Fj:j e I*(a)}. Thatis, there are poinig and; such that

Ni; € ﬁl(és 51)1 Ni, € ﬁz(nilv 81)1 o = MNig € ﬁs(ni_g,ls 51)

and
Ciy € Fj(E.80).8jy € Fip(Cjyn D). ... & = Ljy € Fiy(jy_y. 81).

Indeed, proceed as in Lemma 4.2: consider the saturatiov’'¢f, a, §) by we, map
it via H~1 to the corresponding picture fgr and use the fact that is conjugated to a
linear action to obtain the decomposition of the stable and unstable laminatiogs)of
into segments of-minimal laminations. Take thg-center leaves of the points obtained
this way and map them throudti to center leaves g§. The intersections of these center
leaves withW* (&, d, 8) yield the pointsy;. By reducings one can obtained the desired
conclusion. Apply the same procedure 18t (a).

Pick ¢ > 0 small enough. One can choodge > 0 (and, thereforeg,) such
that Lemma 4.2 and (4.3) imply that the following construction is well defined: given
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FIGURE 2.

Ee MxN,ne W', a,é,), and; € W“(§,4d,6,), letn;, ¢; be as above and define
inductively the point§, ;,0<k < §,0<[ < U, by

£00:=§&; &o1:=¢Cj &0 =i
& = Fiy (k11,6 N Fj(Eki-1,8) fork, 1 >1.

See Figure 2.

But thenésy € W'(n,a,U - ) N Wi(¢,a, S - ¢€). Since the stable and unstable
laminations ofa are non-tangent, far > 0 small enough this intersection has only one
element, thus proving the local commutationf (a) andW* (a). m]

Proof of Theorem 3.1(a)We construct first the laminaticH.

Fix a regular element € S. There is ang, > 0 such that the intersection
W (&,d, &,) N W'(n,d, &,) has at most one element for ayn € M x N. Choose
8 > 0,8, > &, > 0,A, > 1 satisfying (4.3) applied fo#v* (@) and W*(a). For
&,n€ M x N, denote

[5-7 77] = WS (Sa 67 8(1) m Wu (na 67 8(1)

(hence, eithefg, n] is empty or it contains one point). Note that local commutativity can
be rephrased as

Consides, := min{e,, 8./(Aq + 2)}. Foré € M x N, define

Q) = Q(€,d,8,) := [W"(€,d,84), W (£, 4, 8a)],

where[U, V] :={[u,v]:u e U,v e V}.

Since the laminationd/* (@) and W*(a) are continuous, non-tangent, and commute
locally, Q(£) with the induced topology fromM x N is homeomorphic toV* (£,d, 8,) x
WU(&,4d,8,), i.e. to an open set iR (m = dimM). We claim that the family
{Q(&) : & € M x N} determines plaques of @-lamination. In view of R], this is
equivalent to showing that

Q)N QM #¥ = Q)N Q(n) is openin bothY(£) and O (n).
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FIGURE 3.

But this follows from (actually, is equivalent to) the local commutativity of the laminations
W* (@) andW*(@).

It is enough to show that if € Q(§), then¢ belongs to both I (Q (&) N Q(8))
and Iny)(Q (&) N Q(¢)). We will check the first statement, the other being similar. See
Figure 3.

Let ¢ = [t0,m0l, Wheretg € WY(£,d,8,),m0 € W°(,d,8,). Note that
disty < (2, 10), distyxn (70, 70) < 84. Since the holonomy betweei* (¢, @, 5,) and
W*(¢,d,8,) along W*(@) is a local homeomorphism, there is an open neighborhood
VS of no in W¥(&,d,8,) such that[¢, V] ¢ W*(¢,d,8,). Similarly, there exists an
open neighborhoo®* of o in W*(&,a, §,) with [V*, ¢] c W“(¢,d,8,). Then the set
[V¥, V5] is an open neighborhood ¢fin Q(&), and it is also included i (¢). Indeed,
forne VS, r e V¥, lett' = [r,¢),n = [¢, n]. Then[t, n] = [t/, n'] € Q(¢), as claimed.

We have proved therefore that there i€ &lamination integrating¥* (a) and W (@),
hence the famil){]?i}iel as well. Call this laminatiori{. It is clearly A-invariant and
horizontal, because so are the laminations used to construct it.

Since it is obtained as the span of t@d T1-laminations, its leaves will b€ K+1~  as
can be easily seen from the following theorem of Jeythé corollary is a consequence of
the proof).

THEOREM4.5. (Joure” [J]) Assume given on a manifold two continuous transverse
laminations,F; and F,,, with uniformly smooth leaves. If a functighis uniformlyC*+4-
smooth along the leaves &t andF,, then f is C¥*?-smooth(1 < k < 00, 8 € (0, 1)).

COROLLARY 4.6. Moreover, ifF{ — Fs, F,, — Fu, f' 17 = f 1z, f'17 = flF
in the C¥*%-topology, thery’ — f in the C¥+4-topology.

Indeed, given a poirit € M x N, consider a smooth coordinate systgmU x V —
M x N such that in these coordinates a neighborhoddinfthe Ieaf’ﬁ(g) is given by the
graph of a functionF : U — V (hereU andV are open subsets of Euclidean spaces).
This function is uniformlyC X +1 along the laminations off obtained by projecting onto
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U the leaves ofV* (@) N ﬁ(S), respectivelyw (a) N ﬁ(g). Therefore, by Theorem 4.5,
is C(K+D™

Finally, the holonomy of is CX between center leaves because any path aléng
can be realized as a sequence of steps taken alternately #sid€) and W< (a), and,
by Theorem 2.1(2), the stable and unstable holonomies§ &revithin the leaves of the
center-stable, respectively center-unstable, laminations. |

Proof of Theorem 3.1(b)Pick someyg € N and consider the projection: M x N —
M = M x {yo} along the center foliation of the perturbed act@(which is transversal to
both the horizontal laminatioR and the submanifold/ x {yo0}). ThusM x N becomes
a fiber bundle oven, with the fibersCX -diffeomorphic toN (by Theorem 2.1(4)).
Moreover, this identification between the fibers ands C*-uniformly boundedk < K)
with respect tgs in a C¥-small neighborhood of.

Due to the way the laminatiof{ is constructed, each leaf of it is a covering space
of M. Given a center leaj ~1(x), consider the holonomy map &f, A : 71(M, x) —
Homedq ~1(x)), obtained as follows: a loop € Q (M, x) defines the map that associates
to y € ¢~ 1(x) the endpoint of the lift beginning atof y to the Ieaf’ﬁ(y). Note that, by
part (a) of Theorem 3.1, the image afis actually in Diff% (3 71(x)).

The main step is to show that the holonomy mafs trivial.

Assume the fibe;~1(x) is preserved byp(a), for some non-triviala € A (this
always happens, because each partially-hyperbolic map has periodic points in the quotient
M = (M x N)/q). Thep(a)-invariance of bottH and the center laminations imply that

Ao Au(y) =¢aoAly)od,t, v em(M, x), (4.4)

whereA, € Aut(r1(M, x)) is the action induced by(a) andg, := p(a) lg=100)-

In the case whem takes values in a Lie group, equation (4.4) has only the solution
A = I, providedA andg¢, are close to the identity (seKINT, Lemma 4.5]). One would
expect the same to be true in Dfff but we were not able to find a proof. However, if we
add the condition thap, = Id (i.e. we consider the equatiah o A, = A), then this is
an easy consequence of the following theorem of Newrrpgresented here in a version
due to Smith §] (see B, §9] for a proof).

THEOREM4.7. (Newmanl]) Let X be a connected topological manifold endowed with
a metric. Then there is an > 0 such that any non-trivial action of a finite group (or
compact Lie group) o has an orbit of diameter larger that

LEMMA 4.8. LetM = T™ anda € Diff (M) be an Anosov diffeomorphism that has a fixed
pointxg € M. Fix a setT of generators ofr1(M, xo) = Z™. Consider the automorphism
A € Aut(r1(M, xg)) = SL(m, Z) induced byu.

Given a compact manifol®, there is a neighborhood of the identity inHomedaX)
with the following property: ifA : 71(M,x0) — HomedX) is an A-invariant
homomorphism (i.eAocA = A) which mapd into U, thenA is the trivial homomorphism.

Remark.As in Lemma 4.5 of KNT], this implies that the same result holds foran
infranilmanifold Anosov diffeomorphism.
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FIGURE4.

Proof of Lemma 4.8It is enough to consider the case wtiris the sef{e; }1<i<m, given
by the canonical basis @™. DenoteA; := A(e;).

The equationA o A = A implies thatA is the identity on the image od — I,,.
Since A is induced by an Anosov diffeomorphism, 1 is not in the spectrum dfience
7"/ Im(A — I,,) is afinite group, of order = det(A — I,,). Therefore A{ = Idy for each
1 <i < m. LetU be a neighborhood of the identity in Hom@&0 such that Theorem 4.7
can be applied to any cyclic group of order dividing |

Once we know that the holonomy df is trivial, we can construct the desired
homeomorphisnk as follows. See Figure 4. Lael € HomedM x N) be the leaf-
conjugacy betweep andp given by Theorem 2.1(4). Hence, the center leaves afe
given by the images off (x, -) : N - M x N, x € M. DenoteH (x, -) by H,. Since
eachH, is a diffeomorphism fromv to its image, one can speak 2.

Fix a pointx, € M and let

h(x,y) == He(N) N H(Hy, (). (4.5)
That is, h(x, -) o Hx—*1 is the holonomy alontﬁ between the center leaves given by
H., and H,. Thus, by part (a) of Theorem 3.k(x, -) : N - M x N is ack-
diffeomorphism onto its image, as desired. The intersection in the definition is a unique
point by Lemma 4.8, and is a homeomorphism becaukgand the center lamination of
o are transverse and give a global ‘product structureMbix N. Note that the leaves of
H are the imagesdf(-,y) : M - M x N,y € N, and that:(x, N) = H,(N) for each
xeM.

It remains to check that conjugate$ to a product action:

Ba(h(x, ¥)) = Pa(Hy(N)) N pa(H(Hx, ()))
= Haa(x)(N) n H(ﬁa (Hx* M) = Haa(x)(N) N H(Hx* (Aa(3)))
= h(ag(x), Aa(¥)), (4.6)
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whereA, e Diff X (N) is defined by (e (xs), Aa()) = Pa(Hsx, (¥)), hencep, (Hx, ()
andH,,(A,(y)) are in the same leaf . (The second equality in (4.6) follows from the
fact thatH is a leaf-conjugacy and th&invariance ofﬁ.)

TheCO-convergence df to Idy, v asp converges te in C* follows from Theorem 2.1
and (4.5). |

Proof of Theorem 3.1(c)Denote byA7Iy the image ofM throughi(-,y), y € N. This
is a leaf of H, hence aCX-submanifold ofM x N, diffeomorphic toM. Denote by
pry : M x N — M the projection on the first factor. Sindé is a laminationCX -
close to the horizontal foliation gf, there are uniquely determinetf -diffeomorphisms
¢y M — A?y C M x N that are right inverses of py;, in addition,y € N — ¢, € ck
is continuous. In view of Theorem 2.1(3), and Corollary 4p6,converges inCcL™ to
x € M — (x,y) € M x N, uniformly with respect toy € N, asp converges tq in
CL. Under the same conditionisy convergesirC® to Idy; « v, by Theorem 3.1(b). Hence,
for eachy € N, ¢;1 o h(-, y) conjugates thed-actionsa and¢;* o 5[ o ¢y, and is
¢%small. Moreover, since the actions are hyperbolic, this is the only conjug&cyose
to Idy. Therefore, since is continuouslyCX ¥ -locally rigid, ¢, * o A(-, y) is CX and
varies continuously witty € N in the CX -topology, provided is CL-close enough to.
Thus the same is true fore N — h(-,y) € CK(M, M x N).

The fact that convergesto Igh, y in CL~ whenp convergestp in CL+1 follows from
the convergence of the holonomy maps (Theorem 2.1(3)), the continuous local rigidity of
a, and Jourm’s theorem. O

Proof of Theorem 1.1Theorem 7.1 inIiT1] proves theC X tLiP-K=3_deformation rigidity

of p for K > 4. In particular,p is C>1-deformation rigid. Letk > 1 and assume that
the smooth actiop is C°-close enough te so that Theorem 2.1 applies @i 4 with

r = K + 1, whereA is anR-split abelian subgroup &fL (n, Z) provided by the theorem
of Prasad and Raghunathan. Denoteibye Diff 1(T" x T¢) the conjugacy between
andp given by NT1]. ThenH, the image througlg of the horizontal foliatiorH of

p, Is ap | 4-invariant horizontal foliation which has trivial holonomy. Since it must be
spanned by the stable and unstable laminationg[of, it is a CX*Y" -lamination. Let

h be the conjugacy constructed as at the end of the proof of Theorem 3.1(b). Note that
the homomorphismr is trivial, because andp are conjugated. Theinis CX along the
center direction op; alongH one uses the result dK[1], as was done il T1]. Jourrg’s
theorem implies thak belongs toCX . Finally, since both andhg carry H to H, they
differ by a constany-factor: 2 (x, y) = ho(x, ®(y)). Thush also conjugateg andp. O

5. Property(T)
In this section we prove Theorem 3.2. Although some of the following properties are
true in a more general setting, we will state them only for the situation considered by the
theorem.

Recall the following consequence of the propéf®y (see HV, Proposition 1.16]):

Assume the group’ has the property7) relative to the finite se§ c T.
Then, for anye > O there is ar = ér(e) > 0 such that given a unitary
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representatiomw : ' — U(H) and a(§r, S)-invariant vecto € H, & # 0,
there exists an invariant vectdt # 0 with ||€ — &'|| < ¢||£]].

Denote byls : M x T — R the characteristic function of the sétc M x T.

Fora € T, let A, = 3(p(a)*u)/du, the Radon—Nikodym derivative, where
(P*u)(A) == u(®1(A)forA c M xTandd : M x T — M x T. One obtains a
unitary representatiotf : I' — U(L2(M x T, ) by Us(f) = (f o 5(@)~Y) - A2 In
the following we use the notatidii,, a € T, for the unitary action described above and
a e T, for the unitary action induced by on L2(M x T, 1) (note that since preserves
1, Va(f) = fop@™),

Let wr be the measure induced @hfrom w via the projection pf : M x T — T:
wr(A) == u(M x A) for A C T. Denote byu, the conditional measure induced pyon
My, yeT: fong'“‘ = fT[va gduyldur(y). Thenu,(M,) = 1forally e T.

Note that if f € L2(M x T, w) is invariant under thé&-actionU, then|f|% du is a
p-invariant measure o x T. Conditions (2), (3) and (i) of Theorem 3.2 imply that
has to beu,-a.e. constant o, for ur-a.e.y € T.

Notation. Denote disti(p, p) := max{dist-1(p(a), p(a)) : a € S}. Write pla)t =
(ha,va),whereh, - M xT — M,v, : M xT — T.

If two functions differ only on a set of-measure zero we will say that they are equal
modv. We use the same notation for sets that are equal uptowdl set. When there is
no possibility of confusion, we will abbreviate the notation fdt-spaces.

Remark.Denote byL2(M x T)”, respectivelyL2(M x T)?, the vectors ofL2(M x T)
that are fixed by the actionig, respectivelyU. The hypotheses of Theorem 3.2 imply that

L2(M x T’ ¢ L3(M x T)? = LT, u7).

The conclusion of the Theorem is thad(M x T)? = L2(M x T)".

If L2(T, ) were finite dimensional, the result would follow easily from the fact that
has propertyT). In the general case, one needs a generating family ¥ x T)” which
is uniformly almost-invariant forU. Note, however, that even if two different measure
preserving transformations are close to each other, the unitaries they induce are far apart
in the operator norm. Hence, in order to take advantage of the fagi thaiose top, one
has to choose these vectors in a special way. Our approach is, roughly speaking, to select
them recursively.

Remark.The next two lemmas hold if we repla@eby any compact manifold. Only in
Lemma 5.3 is it important that the center direction is one-dimensional.

We begin with some simple estimates.

LEMMA 5.1.
(@ If feL?M xT,uw),then

1Ua(f) = Va(H)llp2 < I1f 0 5@t = fop@ Yz 1AV )Le
0 f 2 1AY = 1| .
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(b) If¢ e CO%T) andf = ¢ o pry (i.e. f depends only on the second variable, hence is
V-invariant), then

Ifop@™ = fliz < Il fllLip - disteo g (va, Prp) - (Y2,
whereQ = suppf U supff o p(a)™1) c M x T.

Proof. Both inequalities are straightforward. The first follows from

1Ua(f) = Va(Dllgz = 1f 0 5@ - A% = fopla) Y,z
<I(fop@ ™ = fop@ ™A%,
1/2

+11fop@™t (A =Dz,

using the fact thaf f o p(a)~%||;2 = || fIl 2, by the unitarity ofv.
For the second, notice that botho 5(a)~1 and f are zero outside2, while for
(x,y)eQcCcMxT

|f o p@) 10, y) = £, )| = |f (ha(x, ¥), va(x, ¥) = f(ha(x, ¥), Y)]
< IIf liLip - supdistr(va (x, y), y) : (x, y) € 2}
Integrating over? yields the desired conclusion. ]

The next lemma is probably well known. We include it here for the sake of
completeness.

LEMMA 5.2. For anye > Othere is aw > 0 such that ifdist-1(p, p) < o then: given
a p-invariant setQ ¢ M x T of positive (finite) measure, there isl&invariant function
£q € L?(M x T, u) which is positives-a.e. on$2 and

l6e — 1all2 < elllall L2

Proof. Let ¢’ be such that’/(1 — ¢/) < 2. SinceA, — 1 uniformly for anya € I as
dist-1(p, p) — 0, one can find» > 0 such that

1/2
2 2
||Ua(1A)—1A||Lz=</ IAY —1|2du) < 1852 =1l - 11all 2 < 87() 1Al 2
A

for any p-invariant setA ¢ M x T and alla € S, provided dist1(p, p) < w. Then, by
property(T), the following holds whenever disi(p, p) < w: given ap-invariant setd
of positive (finite) measure, there idainvariant functior¢’, such that supg@’,) C A and
1€ — Lallz2 < €'l11all 2. In particular,A \ supfé)) is ap-invariant set and

(A \ SUPREAN Y2 < &) — Lall 2 < €'1Lall 2 = &' u(A)Y? (5.1)

(the condition on the support can be satisfied by restricting tbe U -invariant function
provided by the propertyr)).

Let Qo := Q, & := & and define recursivel®, := ©,_1 \ SUPAE,—1), & = ggzn as
long asu(£2,) > 0.
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Thenéq := ), .oé: has the desired properties. Indeddg, |,2 < &'|l1lq, 2

by (5.1) and||&ll,2 < (1+ &)l1g,ll 2, hence), &, converges inL?; the limit is
U-invariant, and its supportis equal® up to a measure-zero set. Finally,

1/2 1/2
e — a2 = (Z 1€, — 19,,\9,,+1||§2> < (Z 1€, — 1szn||§2>

n>0 n>0
5 1/2 1/2
2 1
= (Ze/ 1, an) < (wa ) Il 2. o
n>0 n>0

The main step in the proof is the following.

LEMMA 5.3. Assume the hypotheses of Theorem 3.2 hold pFx 1. There ise, > 0
such that ifdist-1(p, p) < e, then the following holds.

Let! c T be a connected set with a non-empty interior such thpteserves\f x I.
Then there is a measurable functign: M x I — [0, oo) such thaty o p, = ¥ u-a.e.
foreacha € I" and (¥ ~1({1})) < w(M x I)/p foranyx € R.

Proof. We can choose a new Riemannian structureélosuch thatT coincides withT
endowed with the standard metric of volume one, ang vel ut. Note that this affects
dist-o and dist1 by at most a constant factor. We will assume from now on that this is the
original set-up of the lemma.

Replacing! by its closure we may assume without loss of generality thiatclosed.
DenoteM x I by Q. Let?¢ = volr(I) = u(M x I).

Consider first the cask # T. Identify Q andM x [0, £], but, for simplicity, keep all
the other notation unchanged.

Let f : [0, £] — [0, 1] be given by

Fy) = 2y/¢, y €10, ¢/2],

and definef : M x [0, £] — R by f(x,y) = f(y).

In the following we compute som&2-norms explicitly, but it would be enough to
notice to which power of these are proportional; this follows from the behavior of these
guantities under rescaling.

Leta € S. SinceM x [0, ¢] is p-invariant, for eaclx € M the functionv, (x, - ) maps
[0, ¢] into itself, hence it has a fixed point. (Actually, condition (ii) of Theorem 3.2 implies
that both endpoints of the interval are fixed.) Therefore,

supldistr (va(x, ¥), ) : (x,y) € M x [0, £]} < [lva — Pryo,¢; llLip - diam([O, £])
< Cdista(p, p) - €.

whereC does not depend ofi or 7. Since supg U supf(f o p(a)™Y) ¢ M x [0, €],
Lemma 5.1(b) implies that

IfoB@ ™= flig2 < CllflLip - [distea(p, §) - €1- w(M x [0, €)Y2.
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02 19 \2 L2
i =[2 [ (3) a] =%

Ifop@) ™ — fl2 < C'lIfll2distea(p, p), (5.2)

where the constarit’ does not depend gsior 1.
In view of Lemma 5.1(a), the inequality (5.2) shows that i T then

SUIOIIUa(f)—fIILz
aes Ifllz2

But

hence

— 0 as disti(p, p) — 0, independently of. (5.3)

If I = T then¢ = 1 and we consider the functiofi : @ — [0, 1] as above by
identifying T \ {yo} with (0, 1) for some arbitrary pointg € T. Since| f o p(a)™t —
fliLe < C"diste1(p, p) fora € S, the property (5.3) is still valid.

Assume fixed small values;, 2 > 0, to be specified later. If dist(p, p) is small
enough (independently @), then by Lemma 5.2, respectively (5.3) and the prop€&fty
there arel/-invariant functiongq, ¢ € L2(M x T, ) such thatg > 0 u-a.e. onQ and

e — lall 2 < e2lllall 2, (5.4)
If—li2 < el fll2 (5.5)
We can assume that> 0, becausép| has the same property.
Thenyr = (¢ - 1q)/éq IS p-invariant modu. Since v is u-a.e. preserved by

0(ao) = p(ao), it follows from (3) and Fubini's theorem that essentially depends only
on the second variable:(x, y) = ¥ (y), (x, y) € M x [0, £] u-a.e. We have to show that
¥ is not constant on a subset bbf too large measure.
Let » € R be such thaf2, := ¥ ~1({1}) has positiveu-measure. Sinc&, is p(ao)
invariant modu, there is a measurable sgtc I such that2, = M x I, again modx.
From (5.5) and the triangle inequality one obtains that

eillfllz 2 o Tq, — fla N2 = 1(Wéa) Ta, —f Ta, 2
= A8a lq, — flallLz = IA6a lq, —1a,) — (A -1lg, — fla )2
> 1o, — flgllez — 1A - I§a To, — 1o, |12,

hence, using (5.4),

e1lllelipe = e1ll fllg2 = 1A - 1o, — flq,llp2 — [A] - e2lllall L2,

that is
A -1a, — flallL2 < (e1+ A - &2) |1l 2. (5.6)
But a2
1/ 1(824))
- 1 , Al <2,
6( ) ) 11,2 [A] <
IA-1a, — flgllL2 > (5.7)

1 Qs
| </L( )

1/2
= Iell2, 1A = 2.
27\ @ ) t
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Indeed,
volp({y € I :1x — f(y)| < 8}) < 28¢,

hence

- la, = flg, 2 = 1 11, = F 1072, = 82 volr (L \ {2 — f] < 8))
> §%(volr(ly) — 260),

and the choicé = volr(l,)/(40) = w(R:) /(4 (X)) yields the estimate for the case
[A| < 2. The other case is straightforward.

Itis clear that fore1 ande, chosen small enough, the inequalities (5.6) and (5.7) cannot
be satisfied simultaneouslyif(2,)/u(2) > 1/p. |

Proof of Theorem 3.2Choosep such that digti(p, p) < ¢4, Wheree, is given by
Lemma 5.3 forp = 2.

LetB :={y € T : p,(My) # M, forsomea € T'}. Sincep acts through continuous
maps,B is an open set. IB = ¢, we are done. Assum® is non-void.

The complement oM x B is p-invariant, hence so i8/ x B. LetI C T be one of
the connected components Bf ThenM x [ is p-invariant because, by condition (ii) of
Theorem 3.2J{p,(M x I) : a € T} C M x B is connected and contaidg x I. Let
¥ : M x I — R be the function provided by Lemma 5.3. We will show that there is a
connected open non-void s& C I such thaty is u-a.e. constant oM x Jo. Taking
the union of all the connected open sétg" [ that have this property and contalp, we
deduce that there is a maximal open connected,set I such thaty is u-a.e. constant
onM x J,.

But then M x J, is p-invariant mode. Indeed, consider the opégtinvariant set
Q = U{p,(M x Jy) : a € T} D M x J. By (i), Q is connected. Then conditions
(3) and (i) imply that2 = M x To modu for some open and connected $gtc T. Since
Y is p-invariant, [ is constanjt-a.e. Thus, by the maximality of,, we conclude that
To = J4, i.e. thato,(M x J,) = M x J,modu foralla € T, as claimed.

In particular, the boundary o¥f x J, is p-invariant. Sinceut(J,) < wur(I)/2 by
Lemma 5.3, there is a point € I N 8J,. But then (i) implies thatM,, is p-invariant,
contradicting the connectednesslof

It remains to show that given a measurable funcijosupported on @-invariant set
M x I whered) £ I C B is open, connected and such tiiat o, = ¥ u-a.e.foralla € T,
there is an open connected ggtc I such that) is u-a.e. constant o x Jo.

Notice first that in view of the conditions (3) and (i) of Theorem 3.2, by changirm
au-null set we may assume théi(x, y) = v (y) forany(x, y) € M x I. Moreover, there
isasetZ ¢ M x I of full measure such that for anye T':

Pa(Z)=1Z,
V(Pa(z)) =¥ (z), forallzeZ

(letAp :={zeMx1I:Y¥(z) #¥(Ppz)}andtakeZ := M x I \ U{p,(Ap) :a,b € T}).
Pick y e I such thatZ, := M, N Z has full u,-measure inM, anda € T such that
Pa(My) # M,. Theny is constant o, (Z,), hencey is constant oy == pr1(pa(Zy)),
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which implies that) is constant o/ x Jj. We will show that/; coincides modet with
the connected sel := prp (o, (M,)).

Indeed, lety : [0, 1] — M, be aC? curve such that Rro. (v ([0, 1])) = Jo. By Sard’s
theorem, a.e. point aofp is a regular value for the mappingpsp, o y : [0,1] — Jo.
Assume by contradiction tha \ J, has positive measure i and lety, € Jo \ J; be a
density point which is also a regular value foxpip, o y. Letz, € [0, 1] be a preimage
of y, andx, := y (t,) € M. Thent, is a density point ofA := y—l(My \ Zy) C [0, 1].

Sincex, is a regular point for py op,, there is a neighborhoad of x.. in M, such that
01 :={x € O : prrop,(x) = y.} is a codimension-one submanifoldf,. Moreover, by
the inverse mapping theorem, for sofe 0 and possibly after shrinkin@ and 04, one
can choose around local coordinates given by@l-mapCD 01X (ty —6,t.+6) > O
such thatifc € O and|t — t,| < § then

Prr(pa(x)) = prp(pa (¥ (1)) <= x € ®(01 x {t}).
Therefore® (01 x {t € A : |t —t.| < 8}) C My \ Z,. Sinced is a local diffeomorphism,

the left-hand side has a positiug -measure, which contradicts our choiceyof O
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