\qquad

Problem 1. Let x, y, z be nonnegative real numbers such that

$$
\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}=2 .
$$

Prove that $8 x y z \leq 1$.
Problem 2. Consider the polynomials

$$
f(x):=x^{6}+x^{3}+1, \quad g(x):=x^{2}+x+1 .
$$

Denote the roots of $f(x)=0$ by $x_{1}, x_{2}, \ldots, x_{6}$. Show that

$$
\sum_{k=1}^{6} g\left(x_{k}\right)=6 .
$$

Problem 3. Five points are selected in an equilateral triangle with sides of length 1. Prove that there are two of these points whose distance is less or equal to $\frac{1}{2}$.

