Analysis vs. Algebra; the brute-force attack

Oct. 19, 2011

1 The problem

Here is a "classical" problem:
Claim 1.1 The function $f(x)=x^{\alpha}, x \in[0, \infty)$ is α-Hölder.
Definition 1.2 Let $\Omega \subset \mathbb{R}^{n}$ be a (nonempty) set and $0<\alpha \leq 1$.
A function $f: \Omega \rightarrow \mathbb{R}$ is Hölder with exponent α if there is a constant $M>0$ such that $|f(x)-f(y)| \leq M\|x-y\|^{\alpha}$ for any $x, y \in \Omega$.
[For $\alpha=1$ the function is usually called Lipschitz.]
Here $\|x\|$ is the usual distance in \mathbb{R}^{n}, e.g. in \mathbb{R}^{2} it is $\|(x, y)\|=\sqrt{x^{2}+y^{2}}$.
Remark 1.3 If $\alpha>1$ then the only such functions on, e.g., $\Omega=[0,1] \subset \mathbb{R}$, are the constant functions. This is also solvable with Calculus I.

So, to prove the Claim, we have to find an $M>0$ such

$$
\begin{equation*}
\left|x^{\alpha}-y^{\alpha}\right| \leq M|x-y|^{\alpha} \text { for any } x, y \in[0, \infty) \tag{1.1}
\end{equation*}
$$

Equivalently, that

$$
\begin{equation*}
\left|x^{\alpha}-y^{\alpha}\right|-M|x-y|^{\alpha} \leq 0 \text { for any } x, y \in[0, \infty) \tag{1.2}
\end{equation*}
$$

or

$$
\begin{equation*}
\frac{\left|x^{\alpha}-y^{\alpha}\right|}{|x-y|^{\alpha}} \leq M \text { for any } x, y \in[0, \infty), x \neq y \tag{1.3}
\end{equation*}
$$

(for $x=y$ relation (1.3) does not make sense but clearly (1.1) is true).

2 What algebra can do

For $\alpha=1 / 2$ one can find a bound M in (1.2) or (1.3) with algebraic manipulations (in (1.1) take powers, in (1.3) multiply both numerator and denominator the "conjugate", $\sqrt{x}+\sqrt{y}$).

Similarly for $\alpha=p / q$, rational.
One could try to get an explicit bound M_{α} for α rational, then take a limit.
Calculus is a more powerful tool!

3 Finding extreme values

Remember from Calculus I (idea is similar for functions of more variables, Calculus III):
Theorem 3.1 (Extreme value theorem, EVT) Let $\Omega \in \mathbb{R}^{n}$ be a closed and bounded se ${ }^{\top}$ and $f: \Omega \rightarrow \mathbb{R}$ a continuous function.

Then
(a) f is bounded on Ω (just what we need in 1.3));
(b) there are points in Ω where f reaches its maximum, respectively its minimum.

Theorem 3.2 (Fermat's Theorem) Let $\Omega \subset \mathbb{R}^{n}$ be an open set, and $f: \Omega \rightarrow R$ a function. If $x \in \Omega$ is a (local) extremum ${ }^{2}$ of f, then
(a) either f is not differentiable at x
(b) or $f^{\prime}(x)=0$ [respectively, for functions of more variables, all partial derivatives are zero at x].

This gives a way to find extrema of functions.
WARNING: Let $f(x):=e^{-x}$ for $x \in[0, \infty)$. Then $0 \leq f(x) \leq 1$, but cannot just apply the above theorems. We have to take into account the "boundary" of the domain, here 0 and ∞.

In higher dimensions this could be more complicated: e.g., find the extrema of $f(x, y)=x^{2}-2 y^{2}$ on the closed unit disk, $\Omega=\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+y^{2} \leq 1\right\}$.

4 Back to our claim

As (1.2) is stated, we have to find an unknown M. It is more convenient to look at (1.3): we only have to show that

$$
F(x, y):=\frac{\left|x^{\alpha}-y^{\alpha}\right|}{|x-y|^{\alpha}}
$$

is bounded from above for $x, y \geq 0, x \neq y$.
The EVT cannot be used. Why not?

4.1 Simplifying the problem

- Note first that it is enough to solve the case $x<y$. This is still a problem in two variables.
- MAIN SIMPLIFICATION: Notice that $F(t x, t y)=F(x, y)$ for $t>0$.

Therefore, if we denote $t=x / y$, so $x=t y$, we get

$$
F(x, y)=\frac{\left|t^{\alpha}-1\right|}{|t-1|^{\alpha}}=h(t)
$$

and we now only have to consider a function $h(t)$ of a single variable, $t \in(0,1)$. This domain at least is bounded!

Note that one can write $h(t)$ without the absolute values if $0<t<1$.
Still cannot apply EVT! Why not?

4.2 ASSIGNMENT

Fill in the steps so that the EVT can be used to claim that there is an upper bound for $h(t)$ on $(0,1)$.

[^0]
[^0]: ${ }^{1}$ Such sets are called compact, as is clarified in more advances courses.
 ${ }^{2}$ That is, minimum or maximum.

