Analysis vs. Algebra; the brute-force attack

Oct. 19, 2011

1 The problem

Here is a "classical" problem:

Claim 1.1 The function $f(x) = x^{\alpha}$, $x \in [0, \infty)$ is α -Hölder.

Definition 1.2 Let $\Omega \subset \mathbb{R}^n$ be a (nonempty) set and $0 < \alpha \leq 1$.

A function $f : \Omega \to \mathbb{R}$ is Hölder with exponent α if there is a constant M > 0 such that $|f(x) - f(y)| \le M ||x - y||^{\alpha}$ for any $x, y \in \Omega$.

[For $\alpha = 1$ the function is usually called Lipschitz.]

Here ||x|| is the usual distance in \mathbb{R}^n , e.g. in \mathbb{R}^2 it is $||(x,y)|| = \sqrt{x^2 + y^2}$.

Remark 1.3 If $\alpha > 1$ then the only such functions on, e.g., $\Omega = [0,1] \subset \mathbb{R}$, are the constant functions. This is also solvable with Calculus I.

So, to prove the Claim, we have to find an M > 0 such

$$|x^{\alpha} - y^{\alpha}| \le M|x - y|^{\alpha} \text{ for any } x, y \in [0, \infty).$$

$$(1.1)$$

Equivalently, that

$$|x^{\alpha} - y^{\alpha}| - M|x - y|^{\alpha} \le 0 \text{ for any } x, y \in [0, \infty)$$

$$(1.2)$$

or

$$\frac{|x^{\alpha} - y^{\alpha}|}{|x - y|^{\alpha}} \le M \text{ for any } x, y \in [0, \infty), x \neq y$$
(1.3)

(for x = y relation (1.3) does not make sense but clearly (1.1) is true).

2 What algebra can do

For $\alpha = 1/2$ one can find a bound M in (1.2) or (1.3) with algebraic manipulations (in (1.1) take powers, in (1.3) multiply both numerator and denominator the "conjugate", $\sqrt{x} + \sqrt{y}$).

Similarly for $\alpha = p/q$, rational.

One could try to get an explicit bound M_{α} for α rational, then take a limit. Calculus is a more powerful tool!

3 Finding extreme values

Remember from Calculus I (idea is similar for functions of more variables, Calculus III):

Theorem 3.1 (Extreme value theorem, EVT) Let $\Omega \in \mathbb{R}^n$ be a closed and bounded set¹ and $f : \Omega \to \mathbb{R}$ a continuous function.

Then

- (a) f is bounded on Ω (just what we need in (1.3));
- (b) there are points in Ω where f reaches its maximum, respectively its minimum.

Theorem 3.2 (Fermat's Theorem) Let $\Omega \subset \mathbb{R}^n$ be an open set, and $f : \Omega \to R$ a function. If $x \in \Omega$ is a (local) extremum² of f, then

- (a) either f is not differentiable at x
- (b) or f'(x) = 0 [respectively, for functions of more variables, all partial derivatives are zero at x].

This gives a way to find extrema of functions.

WARNING: Let $f(x) := e^{-x}$ for $x \in [0, \infty)$. Then $0 \le f(x) \le 1$, but cannot just apply the above theorems. We have to take into account the "boundary" of the domain, here 0 and ∞ .

In higher dimensions this could be more complicated: e.g., find the extrema of $f(x, y) = x^2 - 2y^2$ on the closed unit disk, $\Omega = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \leq 1\}.$

4 Back to our claim

As (1.2) is stated, we have to find an unknown M. It is more convenient to look at (1.3): we only have to show that

$$F(x,y) := \frac{|x^{\alpha} - y^{\alpha}|}{|x - y|^{\alpha}}$$

is bounded from above for $x, y \ge 0, x \ne y$.

The EVT cannot be used. Why not?

4.1 Simplifying the problem

- Note first that it is enough to solve the case x < y. This is still a problem in two variables.
- MAIN SIMPLIFICATION: Notice that F(tx, ty) = F(x, y) for t > 0.

Therefore, if we denote t = x/y, so x = ty, we get

$$F(x,y) = \frac{|t^{\alpha} - 1|}{|t - 1|^{\alpha}} = h(t)$$

and we now only have to consider a function h(t) of a single variable, $t \in (0, 1)$. This domain at least is bounded!

Note that one can write h(t) without the absolute values if 0 < t < 1. Still cannot apply EVT! Why not?

4.2 ASSIGNMENT

Fill in the steps so that the EVT can be used to claim that there is an upper bound for h(t) on (0, 1).

¹Such sets are called *compact*, as is clarified in more advances courses.

²That is, minimum or maximum.