MATH 2331 PROPERTIES OF THE DETERMINANT

Adapted from Introduction to Linear Algebra by Gilbert Strang, $4^{\text {th }}$ edition.

1. Defining Properties

(1) The determinant of the $n \times n$ identity matrix is 1 .
(2) If A and B are $n \times n$ matrices, and B is obtained from A by exchanging two rows of A, then $\operatorname{det} B=-\operatorname{det} A$.
(3) (a) If B is obtained from A by multiplying row j of A by c, then $\operatorname{det} B=$ $c \operatorname{det} A$.
(b) If

$$
A=\left[\begin{array}{c}
\mathbf{u}+\mathbf{v} \\
\mathbf{a}_{2} \\
\vdots \\
\mathbf{a}_{n}
\end{array}\right], A^{\prime}=\left[\begin{array}{c}
\mathbf{u} \\
\mathbf{a}_{2} \\
\vdots \\
\mathbf{a}_{n}
\end{array}\right], A^{\prime \prime}=\left[\begin{array}{c}
\mathbf{v} \\
\mathbf{a}_{2} \\
\vdots \\
\mathbf{a}_{n}
\end{array}\right]
$$

then $\operatorname{det} A=\operatorname{det} A^{\prime}+\operatorname{det} A^{\prime \prime}$.

2. Properties that are proved from the defining properties

(4) If two rows of A are equal, then $\operatorname{det} A=0$.
(5) If B is obtained from A by subtracting a multiple of one row from another row, then $\operatorname{det} B=\operatorname{det} A$.
(6) If A has a row of zeros, $\operatorname{det} A=0$.
(7) If A is upper triangular or lower triangular, then $\operatorname{det} A=a_{11} a_{22} \ldots a_{n n}=$ product of the diagonal.
(8) If A is singular then $\operatorname{det} A=0$. If A is invertible then $\operatorname{det} A \neq 0$.
(9) $\operatorname{det} A B=\operatorname{det} A \operatorname{det} B$, if A and B are $n \times n$ matrices.
(10) $\operatorname{det} A^{T}=\operatorname{det} A$.

3. Cofactor formula

$$
\operatorname{det} A=\sum_{j=1}^{n} a_{i j}(-1)^{i+j} \operatorname{det} A_{i j}=\sum_{i=1}^{n} a_{i j}(-1)^{i+j} \operatorname{det} A_{i j}
$$

The first sum is a sum across row i, where i is a fixed integer between 1 an n. The second sum is taken over column $j, 1 \leq j \leq n . A_{i j}$ is the matrix that remains after row i and column j are deleted.

The $i j$-th cofactor of A is $C_{i j}=(-1)^{i+j} \operatorname{det} A_{i j}$. One can show from the cofactor formula that $C=\left(A^{T}\right)^{-1} \operatorname{det} A$. This implies Cramer's rule (section 3.3).

4. The Big Formula

Let S_{n} be the set of all $n \times n$ permutation matrices. S_{n} is actually a group, but we don't need that. If $P \in S_{n}$ define $P(j)=i$ if and only if $P_{i j}=1$. Because P has only one " 1 " in each column, for each j there is only one such i. Then

$$
\operatorname{det} A=\sum_{P \in S_{n}} a_{1 P(1)} a_{2 P(2)} \cdots a_{n P(n)} \operatorname{det} P
$$

4.1. Example. Let

$$
A=\left[\begin{array}{llll}
1 & 0 & a & 0 \\
0 & 1 & b & 0 \\
0 & 0 & c & 0 \\
0 & 0 & d & 1
\end{array}\right]
$$

Then

$$
\operatorname{det} A=c \operatorname{det} I+b\left|\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right|+a\left|\begin{array}{llll}
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right|+d\left|\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right|=c
$$

We could express this in terms of permutation matrices like this:

$$
\operatorname{det} A=c \operatorname{det} I+b \cdot 0\left|\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right|+a \cdot 0\left|\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right|+d \cdot 0\left|\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right|=c
$$

4.2. Example. Let

$$
A=\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right]
$$

Then

$$
\operatorname{det} A=0 \operatorname{det} I+1\left|\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right|=1
$$

All other terms in the expansion of the determinant of A are zero.
The cofactor formula would also work well for these examples.

5. Two proofs of property 10: $\operatorname{det} A^{T}=\operatorname{det} A$

5.1. First proof. One proof of this property involves the " $L U$ " factorization that comes from Gaussian Elimination. The basic elimination step is subtraction of a multiple $l_{i j}$ of row i from row j, with $i<j$. This is the same as multiplying A on the left by a matrix $E_{i j}$ which is $I-l_{i j} e_{i} e_{j}^{T}$, or I with -lij in row i, column j. Every such $E_{i j}$ is lower triangular with 1's down the diagonal. If we do three such steps on a $3 \times 3 \mathrm{~A}$, we obtain:

$$
E_{32} E_{31} E_{21} A=U
$$

where U is lower triangular. If $E=E_{32} E_{31} E_{21}$ then E is lower triangular with 1's down the diagonal.

The inverse of $E_{i j}$ is $L_{i j}$ where $L_{i j}$ is $E_{i j}$ with the sign of $l_{i j}$ reversed, to add $l_{i j}$ times row i back to row j. Then

$$
E^{-1}=L_{21} L_{31} L_{32}=L
$$

L is lower triangular with 1's down the diagonal. As an interesting note, for the 3×3 example,

$$
L=\left[\begin{array}{ccc}
1 & 0 & 0 \\
l_{21} & 1 & 0 \\
l_{31} & l_{32} & 1
\end{array}\right]
$$

Then $A=L U$, so $\operatorname{det} A=\operatorname{det} L \operatorname{det} U=\operatorname{det} U=u_{11} u_{22} \cdots u_{n n}$. If row exchanges were performed, then for some permutation P we have $P A=L U$, and $\operatorname{det} A=$ $\operatorname{det} P^{-1} \operatorname{det} U=\operatorname{det} P \operatorname{det} U .\left(P^{-1}=P^{T}\right.$ so $\operatorname{det} P \operatorname{det} P^{T}=1$ and both are ± 1 by row exchanges, so $\operatorname{det} P=\operatorname{det} P^{T}$.)

Now $A^{T}=(L U)^{T}=U^{T} L^{T}$, so that $\operatorname{det} A^{T}=\operatorname{det}\left(U^{T}\right) \operatorname{det}\left(L^{T}\right)$, where U^{T} is lower triangular and L^{T} is upper triangular with 1's down the diagonal. So $\operatorname{det} A^{T}=$ $u_{11} \cdots u_{n n}=\operatorname{det} A$. If row exchanges were performed then $A^{T}=U^{T} L^{T} P^{T}$ and $\operatorname{det} A^{T}=\operatorname{det} U \operatorname{det} P=\operatorname{det} A$.

Whew!
5.2. Second proof. This proof uses the Big Formula. Let $A^{T}=B$, with $a_{i j}=b_{j i}$.

$$
\begin{aligned}
\operatorname{det} A & =\sum_{P \in S_{n}} a_{1 P(1)} a_{2 P(2)} \cdots a_{n P(n)} \operatorname{det} P, \\
& =\sum_{P \in S_{n}} a_{P^{-1}(1) 1} a_{P^{-1}(2) 2} \cdots a_{P^{-1}(n) n} \operatorname{det} P \\
& =\sum_{P \in S_{n}, T=P^{-1}} a_{T(1) 1} a_{T(2) 2} \cdots a_{T(n) n} \operatorname{det} P
\end{aligned}
$$

Note again that $\operatorname{det} T=\operatorname{det} P^{-1}=\operatorname{det} P$. So

$$
\begin{aligned}
\operatorname{det} A & =\sum_{T \in S_{n}} a_{T(1) 1} a_{T(2) 2} \cdots a_{T(n) n} \operatorname{det} T \\
& =\sum_{T \in S_{n}} b_{1 T(1)} b_{2 T(2)} \cdots b_{n T(n)} \operatorname{det} T=\operatorname{det} B=\operatorname{det} A^{T} .
\end{aligned}
$$

