PROOF OF SCHUR’S THEOREM

DAVID H. WAGNER

In this note, I provide more detail for the proof of Schur’s Theorem found in
Strang’s Introduction to Linear Algebra [1].

Theorem 0.1. If A is a square real matrix with real eigenvalues, then there is an
orthogonal matriz Q and an upper triangular matriz T such that A = QTQT.

Proof. Note that A = QTQ7 < AQ = QT. Let q; be an eigenvector of norm

1, with eigenvalue \;. Let qs2, ..., q, be any orthonormal vectors orthogonal to
qi- Let Q1 =[q1, ---, qu)- Then QT'Q; =1, and
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Now I claim that A, has eigenvalues Ao, ..., A,. This is true because
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= (A1 — \)det (Ay — AI).

So A, has real eigenvalues, namely Ay, ..., \,. Now we proceed by induction.
Suppose we have proved the theorem for n = k. Then we use this fact to prove the
theorem is true for n = k + 1. Note that the theorem is trivial if n = 1.

So for n = k41, we proceed as above and then apply the known theorem to As,
which is k x k. We find that Ay = QuT2Q}. Now this is the hard part. Let Q
and A, be as above, and let
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where T is upper triangular. So AQ = QT, or A = QTQT. g

That’s all, folks!
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