Problem 1.

(a) Find the domain and range of each of the following functions:
(i) $f(x, y)=\ln \sqrt{1+x^{2}+y^{2}}$
(ii) $F(x, y, z)=\frac{1}{\sqrt{x^{2}+y^{2}+z^{2}-1}}$
(b) Identify the level curves/surfaces of each of the following functions:
(i) $f(x, y)=e^{-4 x^{2}-y^{2}}$
(ii) $F(x, y, z)=2 x+3 y+6 z$
(c) An open rectangular container (i.e., no top) is to have a volume of 12 cubic feet. The cost of the material for the sides is $\$ 3$ per square foot and the cost for the base is $\$ 5$ per square foot. Express the total cost C of the container as a function of its length x and width y.

Problem 2. Let $f(x, y)=\frac{2 x^{2} y}{x^{4}+y^{2}}$
(a) Find $\lim _{(x, y) \rightarrow(0,0)} f(x, y) \quad$ if $(x, y) \rightarrow(0,0)$ along the x-axis.
(b) Find $\lim _{(x, y) \rightarrow(0,0)} f(x, y) \quad$ if $(x, y) \rightarrow(0,0)$ along the y-axis.
(c) Find $\lim _{(x, y) \rightarrow(0,0)} f(x, y) \quad$ if $(x, y) \rightarrow(0,0)$ along the line $y=m x$.
(d) Find $\lim _{(x, y) \rightarrow(0,0)} f(x, y) \quad$ if $(x, y) \rightarrow(0,0)$ along the parabola $y=\lambda x^{2}, \lambda>0$.
(e) Does $\lim _{(x, y) \rightarrow(0,0)} f(x, y)$ exist ?

Problem 3.

(a) Let $f(x, y)=y^{2} e^{x y}+\frac{x}{y}$. Calculate $f_{x x}$ and $f_{y x}$.
(b) Let $z=\ln \sqrt{x^{2}+y^{2}}$. Show that $x \frac{\partial z}{\partial x}+y \frac{\partial z}{\partial y}=1$
(c) Let $u=x^{2}-2 y^{2}+z^{3}$ where $x=\sin t, y=e^{2 t}, z=3 t$. Calculate $\frac{d u}{d t}$ and express your answer in terms of t.
(d) Let $z=e^{2 x} \ln y$ where $x=u^{2}-2 v$ and $y=v^{2}-2 u$. Calculate $\frac{\partial z}{\partial u}$ and $\frac{\partial z}{\partial v}$

Problem 4. Let $f(x, y)=x \tan ^{-1}\left(\frac{y}{x}\right)$ and $F(x, y, z)=x^{2}+3 y z+4 x y$.
(a) (i) Find the gradient of F.
(ii) Determine the direction in which f decreases most rapidly at the point $(2,2)$. At what rate is f decreasing?
(b) Find the directional derivative of F at the point $(1,1,-5)$ in the direction of the vector $\mathbf{a}=2 \mathbf{i}+3 \mathbf{j}-\sqrt{3} \mathbf{k}$.
(c) Find an equation for the tangent plane to the level surface $F(x, y, z)=3$ at the point $(3,-1,-2)$.
(d) Find an equation for the tangent plane and scalar parametric equations for the normal line to the surface $z=f(x, y)$ at the point $(2,-2,-\pi / 2)$.

Problem 5. In each of the following, determine whether \mathbf{F} is the gradient of a function f. If it is, find all such functions f.
(a) $\mathbf{F}(x, y)=\left(3 x^{2} y^{2}+3 y+x\right) \mathbf{i}+\left(2 x^{3} y+3 x y-\sqrt{y}\right) \mathbf{j}$.
(b) $\mathbf{F}(x, y)=\left(2 x e^{y}+4 x y+e^{2 x}\right) \mathbf{i}+\left(x^{2} e^{y}+2 x^{2}+\cos 2 y-1\right) \mathbf{j}$.

Problem 6.

(a) Find the stationary points of $f(x, y)=x^{2}+2 y^{2}-x^{2} y$.
(b) For each stationary point P found in (a), determine whether f has a local maximum, a local minimum, or a saddle point at P.

Problem 7.

(a) Find the absolute maximum and absolute minimum values of $f(x, y)=x^{2}+2 y^{2}-x$ on the closed disk $D: x^{2}+y^{2} \leq 1$.
(b) Find the absolute maximum and absolute minimum values of $f(x, y)=2+2 x+2 y-x^{2}-y^{2}$ on the closed triangular region bounded by the lines $x=0, y=0, x+y=9$.

Problem 8.

(a) According to U.S. Postal Service regulations, the length plus the girth (perimeter of a cross-section) of a package cannot exceed 108 inches. What are the dimensions of the rectangular box of maximum volume that is acceptable for mailing? What is the maximum volume?
(b) A rectangular box without a top is to have a volume of 12 cubic feet. The materials used to construct the box cost $\$ 3$ per square foot for the sides and $\$ 4$ per square foot for the bottom. What dimensions will yield the minimum cost?

