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ON ANALYTIC SOLUTIONS OF THE HEAT EQUATION WITH AN OPERATOR

COEFFICIENTA. Vershynina∗ and S. Gefter∗ UDC 517.968; 517.983
Let A be a bounded linear operator on a Banach space and let g a be vector-valued function that is analytic in a
neighborhood of the origin of R. We obtain conditions of the existence of analytic solutions for the Cauchy problem
{

∂u

∂t
= A2 ∂

2
u

∂x2 ,

u(0, x) = g(x).
Moreover, we consider a representation of the solution of this problem as a Poisson integral and

study the Cauchy problem for the corresponding inhomogeneous equation. Bibliography: 22 titles.

1. IntroductionThe Cauhy theorem on analyti solutions of di�erential equations with analyti oeÆients is well known inthe theory of ordinary di�erential equations (see, e.g., [1℄). For the lass of so-alled normal partial di�erentialequations, a similar theorem had been proved by Cauhy and Kovalevskaya [2{4℄. Moreover, Kovalevskaya [5℄showed that if an equation is not normal, then a Cauhy problem for this equation may fail to have analytisolutions. Let us onsider the famous example of Kovalevskaya:










�u�t = a2 �2u�x2 ;u(0; x) = b1− x (1)(in what follows, it is onvenient for us to onsider an arbitrary oeÆient b in the initial ondition).It is easy to hek that the following power series:
∞
∑n;m=0 (m+ 2n)!m!n! a2nbtnxm (2)is a formal solution of problem (1). Therefore, for a 6= 0 and b 6= 0, the Cauhy problem (1) does not havesolutions that are analyti in a neighborhood of zero. The researh initiated by Kovalevskaya was ontinued innumerous papers (see, e.g., [6{18℄).In this paper, we onsider the following operator analog of the Cauhy problem (1):











�u�t = A2 �2u�x2 ;u(0; x) = b1− x; (3)and a more general Cauhy problem:






�u�t = A2 �2u�x2 ;u(0; x) = g(x): (4)Here A is a bounded linear operator on a Banah spae E, b ∈ E, and g is a vetor-valued funtion that isanalyti in a neighborhood of the origin. By formal analogy with the equation in (1), Eq. (4) is also alled \theheat equation." Note that in some interesting examples, our \heat equation" is a hyperboli partial di�erentialequation (see Remark 3.7). We onsider solutions of the Cauhy problem (4) that are analyti in a neighborhoodof the origin of R×R. By a solution of problem (4) we mean a loal analyti solution, i.e., a vetor-valued funtionof real variables t and x that is analyti in a neighborhood of zero, satis�es the equation in this neighborhood,
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and satis�es the initial ondition in a neighborhood of the origin of R. The formal solution of Cauhy problem(3) looks like the salar one:
∞
∑n;m=0 (m+ 2n)!m!n! A2nbtnxm: (5)It is obvious that if A = 0, then the funtion u(t; x) = ∞

∑n=0 bxn = b1−x is an analyti solution of problem (3).Similarly, there exists an analyti solution of problem (3) if A is a nilpotent operator, i.e., Ak = 0 for some k. Wealso onsider more general operators that are lose to zero in the spetral sense (namely, quasinilpotent ones).Reall that an operator A is alled quasinilpotent if the spetrum �(A) of A onsists of the single point � = 0.We show that series (5) an be onvergent in a neighborhood of the origin if A is a quasinilpotent operatorsatisfying some additional assumption (see Proposition 3.2).Now we formulate the main result of our paper.Theorem 3.8. The following onditions are equivalent:(1) The Cauhy problem (3) has an analyti solution for eah vetor b ∈ E;(2) the Cauhy problem (4) has an analyti solution for any vetor-valued funtion g(x) that is analyti in aneighborhood of zero;(3) the operator A is quasinilpotent, and the Fredholm resolvent FA2(z) = (1− zA2)−1 of the operator A2 is anentire funtion of exponential type (i.e., ‖FA2(z)‖ ≤ Ce�|z| for some onstants C and �).Moreover, if these onditions are ful�lled, then the solution of the Cauhy problem (4) is unique and has thefollowing expliit form: u(t; x) = g(x) + ∞
∑n=1 tnn!A2ng(2n)(x)(see Remark 5:2).Thus, if the Cauhy problem (4) has an analyti solution for any analyti initial ondition, then the operatorA is lose to zero in the spetral sense. In partiular, in the �nite-dimensional ase, the equation from the Cauhyproblem (4) is of the form �uk�t = m

∑j=1 kj �2uj�x2 ; k = 1; : : : ;m (m = dimE);where the matrix C = (kj) is nilpotent (see Corollary 3.4). Certainly, in the given partiular ase, this fat is asimple orollary of the general theorem obtained by Mizohata (see [10, Se. 3, Theorem 1℄).Theorem 3.8 an be onsidered as one more illustration of unusual properties of objets onneted withquasinilpotent operators (see, for example, [19, Ses. 4.6 and 4.10℄ and [22℄).Some examples of expliit solutions of the Cauhy problem (3) are given in Se. 3 (see Corollaries 3.3{3.5,Example 3.6, and Remark 3.7).Our study of the Cauhy problem (4) is based on the onept of A-holomorphi formal power series (seeDe�nition 2.1), whih was investigated in the paper [22℄. In [22℄, this onept was used in the study of holomorphisolutions of the equation z2Aw′ + g(z) = w, where A is a quasinilpotent linear operator on a Banah spae. Letus note that eah ondition of the Theorem 3.8 is equivalent to the A2-holomorphiity of the formal power series (�) = ∞
∑n=0 (2n)!n! �n (see Proposition 2.9). The onept of A-holomorphiity is onsidered in Se. 2.In Se. 4, we onsider a representation of the solution of the Cauhy problem (4) as a Poisson integral. Inour situation (i.e., if A is quasinilpotent), the operator analog of the heat kernel HA(t; �) = 12A√�t exp {− �24A2t}ertainly has no usual sense. We onsider HA as a vetor-valued distribution, where the spae of \test funtions"is the spae of all onvergent power series with oeÆients from E (see De�nition 4.1 and Proposition 4.3). Thenwe show that the solution of the Cauhy problem (4) an be represented as the onvolution of HA with the initialondition g (see Theorem 5.1).In Se. 5, we study the Cauhy problem for the inhomogeneous equation:

{ �u�t = A2 �2u�x2 + f(t; x);u(0; x) = 0:
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We show that if the onditions of Theorem 3.8 are ful�lled, then the analyti solution of this Cauhy probleman be found as a series with respet to the \small parameter" A (see Theorem 5.1):u(t; x) = ∞
∑k=0A2kuk(t; x):

2. PreliminariesLet E be a omplex Banah spae, let A : E → E be a bounded linear operator, let b ∈ E, and letf(�) = ∞
∑n=0 n�n be a formal power series with oeÆients from C. De�nef(zA) = ∞

∑n=0 nAnzn; z ∈ C; (6)and f(zA)b = ∞
∑n=0 nAnbzn; z ∈ C: (7)Then f(zA) is a power series with oeÆients from the algebra B(E) of all bounded operators in the spaeE, and f(zA)b is a power series with oeÆients from E. The radius of onvergene of series (6) is denoted byRA(f), and that of series (7) is denoted by RA;b(f).De�nition 2.1. The power series f(�) is alled A-holomorphi if RA(f) > 0 and (A; b)-holomorphi if RA;b(f) >0. It is obvious that an A-holomorphi power series is (A; b)-holomorphi for all vetors b ∈ E, and RA;b(f) ≥RA(f). Moreover, if |z| < RA(f), then the sum of the series in the right-hand side of equality (7) is the resultof the ation of the operator f(zA) on b.Remark 2.2. Assume that the power series f has a positive radius of onvergene R(f). Then this series isA-holomorphi for eah bounded operator A. Moreover, if �(A) is the spetral radius of the operator A and

|z|�(A) < R(f), then f(zA) is well de�ned as the ation of the holomorphi funtion f on the operator zA.Example 2.3. Assume that b ∈ ker Am for some m ∈ N. Thenf(zA)b = m−1
∑n=0 nAnbzn;i.e., every power series f(�) is (A; b)-holomorphi.If the spae E is �nite-dimensional, then the onverse statement also holds in the situation whih is mostinteresting for us (see [22, Proposition 1.4℄).Proposition 2.4. Let dimE < ∞, let f be a power series, and let the radius of onvergene of f be 0. If f is(A; b)-holomorphi, then b ∈ ker Am for some m ∈ N.In the Hilbert spae ase, the following analog of Proposition 2.4 is true.Proposition 2.5. Let E be a Hilbert spae, let f(�) = ∞
∑n=0 n�n be a power series, and let the radius of onver-gene of f be equal to zero. If A is a normal bounded operator and f is (A; b)-holomorphi, then b ∈ ker A.Proof. Let RA;b(f) > 0. Aording to the vetor analog of the Cauhy{Hadamard formula,1RA;b(f) = limn→∞
n√|n|‖Anb‖ <∞:Let us show that there exists limn→∞

n√‖Anb‖. Aording to the spetral theorem, we an identify E with L2(X;�)for some measure spae (X;�) and onsider A as the multipliation operator:(Ab)(x) = a(x)b(x); where a ∈ L∞(X;�):
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Then n√‖Anb‖ = 2n√∫X |a(x)|2n|b(x)|2d�, and this sequene onverges to the norm of a(x) in the spae L∞(X;�b),where d�b = |b(x)|2d�. On the other hand, limn→∞
n√|n| = ∞. Hene, limn→∞

n√‖Anb‖ = 0. Therefore, a(x) = 0�b-almost everywhere, i.e., a(x)b(x) = 0 �-almost everywhere. Thus, Ab = 0. �Using Example 2.3, it is easy to �nd examples of (A; b)-holomorphi formal power series that are not A-holomorphi. However, using the Baire ategory theorem, one an prove the following statement (see [22,Theorem 1.5℄).Theorem 2.6. If the formal power series f is (A; b)-holomorphi for all b ∈ E, then it is A-holomorphi.The following statement shows that if A is not quasinilpotent, then the onept of A-holomorphi formalpower series oinides with the usual onept of holomorphi power series (see [22, Proposition 1.7℄).Proposition 2.7. If the operator A has a positive spetral radius, then a power series f is A-holomorphi if andonly if it has a positive radius of onvergene. Thus, if f has zero radius of onvergene and f is A-holomorphi,then A is quasinilpotent.The following two formal power series play an important role in our further study:'(�) = ∞
∑n=0n!�n and  (�) = ∞

∑n=0 (2n)!n! �n:Lemma 2.8. Let A : E → E be a bounded linear operator and let b ∈ E. Then(1)  is (A; b)-holomorphi if and only if ' is (A; b)-holomorphi;(2)  is A-holomorphi if and only if ' is A-holomorphi.Proof. It is enough to notie that, aording to the Stirling formula,n√ (2n)!n! ∼ 4ne and n√n! ∼ ne : �Reall that an entire funtion g(z) with values in a Banah spae is alled a funtion of exponential type if
‖g(z)‖ ≤ Ce�|z| for some onstants C and �. Reall also that a bounded linear operator A is quasinilpotent ifand only if its Fredholm resolvent (1− zA)−1 is an entire funtion (see [19, Chap. 4℄).Proposition. The Fredholm resolvent (1− zA)−1 of the operator A is an entire funtion of exponential type ifand only if the series  (�) = ∞

∑n=0 (2n)!n! �n is A-holomorphi.Proof. It follows from Lemma 2.8 that we an onsider the power series '(�) = ∞
∑n=0n!�n instead of  (�). Let 'be A-holomorphi. Then 1RA(') = limn→∞

n√n!‖An‖ < +∞; (8)and the operator A is quasinilpotent. Now identity (8) is equivalent to the statement that the entire funtion(1− zA)−1 = ∞
∑n=0Anzn is of exponential type (see [21, p. 95℄). �Let us give an example where the funtion  (zA) an be omputed expliitly.Example 2.10. Let E = C[0; 1℄ and let A1 be the integration operator:(A1b)(s) = s

∫0 b(y)dy; b ∈ E:It is well known that (An1 b)(s) = 1(n− 1)! s
∫0 (s− y)n−1b(y)dy; (9)
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‖An1‖ ≤ 1n! , and A1 = A2, where (Ab)(s) = 1√� s
∫0 b(y)√s− ydy:It is easy to hek that the series  is A1-holomorphi and RA1( ) = 1=4, i.e.,  is A2-holomorphi andRA2( ) = 1=4: For the expliit alulation of the operator  (zA2), note that1 + ∞

∑n=1 (2n)!(n!)2 (x2 )2n = 1√1− x2 ; |x| < 1:Hene,
∞
∑n=1 (2n)!n!(n− 1)! (x2 )2n−2 = 2(1− x2)3=2 ; |x| < 1;and

∞
∑n=1 (2n)!n!(n− 1)!n−1 = 2(1− 4)3=2 ; || < 14 : (10)Now from (9) and (10) we dedue that( (zA2)b)(s) = b(s) + 2z s

∫0 b(y)dy(1− 4z(s− y))3=2 ; |z| < 1=4: (11)
3. Main resultLet E be a Banah spae, let A : E → E a bounded linear operator, and let g be a E-valued funtion that isanalyti in a neighborhood of zero. In this setion, we onsider the problem of solution existene for the Cauhyproblem






�u�t = A2 �2u�x2 ;u(0; x) = g(x): (12)By a solution of problem (12) we mean a loal analyti solution, i.e., a vetor-valued funtion of real variablest and x that is analyti in a neighborhood of zero, satis�es the equation in this neighborhood, and the initialondition in a neighborhood of the point x0 = 0.At �rst, onsider only an algebrai situation in whih g is a formal power series.Lemma 3.1. Let g(x) = ∞
∑m=0 bmxm be a formal power series with oeÆients from E. Then the Cauhy problem(12) has a unique formal solutionu(t; x) = ∞

∑n;m=0 (m+ 2n)!m!n! A2nbm+2ntnxm = ∞
∑n=0 tnn!A2ng(2n)(x):Proof. Assume that u(t; x) = ∞

∑n;m=0 nmtnxm;nm ∈ E, is a formal solution of the Cauhy problem (12). After a formal substitution into the equation, we seethat
∞
∑n;m=0(n+ 1)n+1mtnxm = ∞

∑n;m=0(m+ 2)(m+ 1)A2nm+2tnxm
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and ∞
∑m=0 0mxm = ∞

∑m=0 bmxm:Hene, (n+ 1)n+1m = (m+ 2)(m+ 1)A2nm+2and 0m = bm; n;m ≥ 0;i.e., n;m = (m+ 2n)!m!n! A2nbm+2n; n;m ≥ 0:Thus, u(t; x) = ∞
∑n;m=0 (m+ 2n)!m!n! A2nbm+2ntnxmis the unique formal solution.It is easy to hek that this solution an be represented as u(t; x) = ∞

∑n=0 tnn!A2ng(2n)(x), and the expression onthe right-hand side is a well-de�ned formal power series in variables t; x. The lemma is proved. �Now for b ∈ E we onsider the following speial Cauhy problem:










�u�t = A2 �2u�x2 ;u(0; x) = b1− x: (13)Proposition 3.2. The Cauhy problem (13) has a solution if and only if the formal power series  (�) =
∞
∑n=0 (2n)!n! �n is (A2; b)-holomorphi (see De�nition 2:1). Moreover, the solution is unique, and it an be representedby the following two series: u(t; x) = ∞

∑n;m=0 (m+ 2n)!m!n! A2nbtnxmand u(t; x) =  ( tA2(1− x)2 ) b1− x = ∞
∑n=0 (2n)!n! A2nbtn(1− x)2n+1 ;

|t| < T , |x| < R, where R ∈ (0; 1) and T = (1−R)2RA2;b( ).Proof. Aording to Lemma 3.1, the unique formal solution of the Cauhy problem (13) isu(t; x) = ∞
∑n;m=0 (m+ 2n)!m!n! A2nbtnxm:Assume that this series onverges for |t| < T and |x| < R, where R ∈ (0; 1). Sine

∞
∑m=0 (m+ 2n)!m!n! xm = 1(1− x)2n+1 ;u(t; x) = ∞

∑n=0 (2n)!n! ( ∞
∑m=0 (m+ 2n)!m!n! xm)A2nbtn = ∞

∑n=0 (2n)!n! 1(1− x)2n+1A2nbtn:Therefore, limn→∞
n√ (2n)!n! 1(1− x)2n+1 ‖A2nb‖ < +∞;
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i.e.,  is (A2; b)-holomorphi.On the other hand, let  be (A2; b)-holomorphi. Then the power series ∞
∑n=0 (2n)!n! A2nb tn(1−x)2n+1 onverges if

|t|(1−x)2 < RA2;b( ). Therefore, if R ∈ (0; 1), then the power series u(t; x) = ∞
∑n;m=0 (m+2n)!m!n! A2nbtnxm onvergesfor |x| < R, |t| < (1−R)2RA2;b( ), andu(t; x) = ∞

∑n=0 (2n)!n! A2nbtn(1− x)2n+1 ; |t| < T; |x| < R: �Aording to 2.4 and 2.5, we dedue the following orollaries from Proposition 3.2.Corollary 3.3. Let dimE < +∞. Then the Cauhy problem (13) has a solution if and only if b ∈ ker Ak forsome k ∈ N. Moreover, if b ∈ ker A2N+1; then the solution of this problem is of the formu(t; x) = N
∑n=0 (2n)!n! A2nbtn(1− x)2n+1 ; t ∈ R; |x| < 1:Corollary 3.4. Let dimE < +∞. Then the Cauhy problem (13) has a solution for eah vetor b ∈ E if andonly if the operator A is nilpotent.Corollary 3.5. Let E be a Hilbert spae, let b ∈ E, and let A be a bounded normal operator. Then the Cauhyproblem (13) has a solution if and only if b ∈ ker A.Now we give an example of a nontrivial expliit solution of Cauhy problem (13).Example 3.6. Let E = C[0; 1℄ and let A be the square root from an integration operator:(Ab)(s) = 1√� s

∫0 b(y)√s− ydy:Then  is A2-holomorphi, and RA2;b( ) = 1=4 (see Example 2.10). Aording to Proposition 3.2, the solutionof the Cauhy problem (13) is of the formu(t; x) =  ( tA2(1− x)2 ) b1− x; x ∈ (−1; 1); |t| < 14(1− x)2:Now equality (11) in Example 2.10 shows that[u(t; x)℄(s) = b(s)1− x + 2t s
∫0 b(y)dy((1− x)2 − 4t(s− y))3=2 ; (14)x ∈ (−1; 1), |t| < 14 (1− x)2, s ∈ [0; 1℄.Remark 3.7. Example 3.6 shows that the series sum  (zA2) = ∞

∑n=0 (2n)!n! A2nzn presents impliitly in a formulafor a solution of the 2-D wave equation with some speial initial onditions. Indeed, in this example, the Cauhyproblem (13) an be written in the following form:






















�u�t (t; x; s) = s
∫0 �2u�x2 (t; x; y)dy;u(0; x; s) = b(s)1− x; s ∈ [0; 1℄:
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Thus, the funtion u(t; x; s) satis�es the partial di�erential equation:��s(�u�t ) = �2u�x2and the onditions u(0; x; s) = b(s)1−x , s ∈ [0; 1℄, and �u�t (t; x; 0) = 0:Now from (14) we onlude that the funtionu(t; x; s) = b(s)1− x + 2t s
∫0 b(y)dy((1− x)2 − 4t(s− y))3=2 ; x ∈ (−1; 1); |t| < 14(1− x)2;s ∈ [0; 1℄, is a solution of Eq. (15). If b ∈ C1[0; 1℄, then the funtion u(t; x; s) is di�erentiable with respet to s.In this ase, Eq. (15) may be rewritten in the usual form �2u�t�s = �2u�x2 . By a linear substitution, this equation anbe redued to the wave equation.Finally, onsider the Cauhy problem (12) with an arbitrary analyti vetor-valued funtion g, whereg(x) = ∞

∑m=0 bmxm; |x| < R(g):Theorem 3.8. The following onditions are equivalent:(1) The Cauhy problem (13) has an analyti solution for eah vetor b ∈ E;(2) the Cauhy problem (12) has an analyti solution for eah vetor-valued funtion g(x) that is analyti in aneighborhood of zero;(3) the operator A is quasinilpotent (i.e., the spetrum of A ontains of the point 0 only), and the Fredholmresolvent (1− zA2)−1 of the operator A2 is an entire funtion of exponential type.Moreover, if at least one of these onditions is true, then the Cauhy problem (12) has a unique analytisolution u(t; x) = ∞
∑n;m=0 (m+ 2n)!m!n! A2nbm+2ntnxm;and this series onverges for |t| < T0, |x| < R0, where T0 = �0RA2( )R(g)2, R0 = �0�1R(g), and �0; �0; �1 arearbitrary onstants satisfying the onditions �0; �0; �1 ∈ (0; 1) and �0 < �21(1− �0)2.Proof. Aording to Proposition 3.2 and Theorem 2.6, ondition (1) is equivalent to the fat that the powerseries  (�) = ∞

∑n=0 (2n)!n! �n is A2-holomorphi. Hene, onditions (1) and (3) are equivalent (see Lemma 2.8and Proposition 2.9). It is obvious that (1) follows from (2). We laim that ondition (2) follows from theA2-holomorphiity of the power series  (�). Aording to Lemma 3.1,u(t; x) = ∞
∑n;m=0 (m+ 2n)m!n! A2nbm+2ntnxmis the unique formal solution of the Cauhy problem (12). Now we show that there exist positive T0 and R0suh that this series onverges for |t| < T0; |x| < R0. Consider 1; 2; 3; 4 ∈ (0; 1) with 3 < 122(1 − 4)2 (forexample, 1 = 9=10, 2 = 3=4, 3 = 1=8, and 4 = 1=2) and r1 = 1RA2( ). Then the series ∞

∑n=0 (2n)!n! ‖A2n‖rn1onverges. Therefore, there exists a onstant M1 suh that(2n)!n! ‖A2n‖ ≤ M1rn1 ; n = 0; 1; : : : :Let r2 = 2R(g). Then there exists a onstant M2 > 0 suh that ‖bm‖ ≤ M2rm2 , m = 0; 1; : : : . Hene,(2n)!n! ∞
∑m=0 (m+ 2n)!m!(2n)! ‖A2n‖‖bm+2n‖|x|m ≤ (2n)!n! M2‖A2n‖r2n2 ∞

∑m=0 (m+ 2n)!m!(2n)! ( |x|r2 )m
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= (2n)!M2‖A2n‖n!r2n2 1(1− |x|r2 )2n+1 ≤ M1M2rn1 r2n2 1(1− |x|r2 )2n+1for |x| < r2 and n = 0; 1; : : : .Now let T0 = 3RA2( )R(g)2 and R0 = 24R(g). If |t| < T0 and |x| < R0, then
|t|r1r22(1− |x|r2 )2 < 3RA2( )R(g)21RA2( )22R(g)2(1− R0r2 )2 = 3122(1− 4)2 < 1;i.e., the series

∞
∑n=0 1rn1 r2n2 |t|n(1− |x|r2 )2n+1and

∞
∑n=0 (2n)!n! ( ∞

∑m=0 (m+ 2n)!m!(2n)! ‖A2n‖‖bm+2n‖|x|m)

|t|nonverge. Thus, the series
∞
∑n;m=0 (m+ 2n)!m!n! ‖A2n‖‖bm+2n‖|x|m|t|nonverges for |t| < T0 and |x| < R0. To omplete the proof, it is enough to take �0 = 3, �0 = 4, and �1 = 1=21 2.The theorem is proved. �

4. Solution representation by a Poisson integralIn the lassi ase (E = C and A > 0), it is well known that the solution of the Cauhy problem (12) with abounded ontinuous initial funtion g(x) an be written as the Poisson integral:u(t; x) = 12A√�t +∞
∫

−∞

exp {

− �24A2t}g(x− �)d�:In the vetor ase, if the operator A is noninvertible, then the expression 12A√�t exp {− �24A2t} has no diret sense.On the other hand, if E = C, A > 0, and g ∈ E[�℄, g(�) = 2p
∑m=0 bm�m, then it is easy to hek that+∞

∫

−∞

12A√�t exp {

− �24A2t}g(�)d� = p
∑n=0 (2n)!n! A2nb2ntn:This equality gives us a basis for the following de�nition of the Poisson integral in the spae of formal powerseries.Let E be a Banah spae and let E[[�℄℄ be the linear spae of formal power series with oeÆients from E.For r > 0 and g(�) = ∞

∑k=0 bk�k ∈ E[[�℄℄, we set
‖g‖r = ∞

∑k=0 ‖bk‖rk; Er〈�〉 = {g ∈ E[[�℄℄ : ‖g‖r < +∞};and E〈�〉 = ⋃r>0Er〈�〉. Then (Er〈�〉; ‖ · ‖) is a Banah spae, and E〈�〉 is the linear spae of all onvergent powerseries with oeÆients from E. We furnish E〈�〉 with the topology of indutive limit of Banah spaes Er〈�〉(see [20, Chap. 1℄, where the ase E = C is onsidered in a similar way).
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De�nition 4.1. Let A : E → E be a bounded linear operator. For g ∈ E〈�〉 and g(�) = ∞
∑k=0 bk�k, we de�ne12A√�t +∞

∫

−∞

exp{

− �24A2t}g(�)d� = ∞
∑n=0 (2n)!n! A2nb2ntn (16)(we onsider the right-hand side of equality (16) as an element of E[[t℄℄).Remark 4.2 We note that if A = 0, then12A√�t +∞

∫

−∞

exp {

− �24A2t}g(�)d� = g(0):Proposition 4.3. Assume that A is quasinilpotent and that the Fredholm resolvent of A2 is an entire funtionof exponential type. Then the series in the right-hand side of equality (16) has a positive radius of onvergene.Moreover, if we de�ne (HAg)(t) := 12A√�t +∞
∫

−∞

exp{

− �24A2t}g(�)d�; (17)then HA is a ontinuous linear map from E〈�〉 to E〈t〉.Proof. If g(�) = ∞
∑k=0 bk�k, then (HAg)(t) = ∞

∑n=0 (2n)!n! A2nb2ntn:Aording to 2.9, 1RA2( ) = limn→∞
n√ (2n)!n! ‖A2n‖ < +∞:Therefore, limn→∞

n√ (2n)!n! ‖A2n‖ ‖b2n‖ = limn→∞
n√ (2n)!n! ‖A2n‖ n√‖b2n‖ ≤ 1RA2( )R(g)2 :Thus, if |t| < RA2( )R(g)2, then the series in the right-hand side of equality (16) onverges, i.e., HAg ∈ E〈t〉. Itis obvious that HA is linear. Let us show that HA is ontinuous. To this end, we show that the all restritionsHA|Er〈�〉 : Er〈�〉 → E〈t〉, r > 0, are ontinuous. Take r0 > 0 and g ∈ Er0〈�〉. Aording to Proposition 2.9,(2n)!n! ‖A2n‖ ≤Mn, n ∈ N, for some M > 0. Let r1 = r20M . Then

‖HAg‖r1 = ∞
∑n=0 (2n)!n! ‖A2nb2n;k‖rn1 ≤

∞
∑n=0 ‖b2n;k‖r2n0 ≤ ‖g‖r0 :Therefore, HA is a ontinuous map from Er0〈�〉 to Er1〈t〉. Hene, HA is ontinuous as a map from Er0〈�〉to E〈t〉. �Theorem 4.4. Let g be a vetor-valued funtion that is analyti in a neighborhood of zero and g(x) = ∞

∑m=0 bmxm,
|x| < R(g). Assume that A is quasinilpotent and that the Fredholm resolvent of A2 is an entire funtion ofexponential type. Consider T0 and R0 whih were de�ned in Theorem 3:8. Then the solution of Cauhy problem(12) an be represented as u(t; x) = 12A√�t +∞

∫

−∞

exp{

− �24A2t}g(x− �)d�; (18)
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|t| < T0, |x| < R0, i.e., for eah �xed x ∈ (−R0; R0), the right-hand side of equality (17) is a onvergent powerseries in t ∈ (−T0; T0) whih oinides with the series in the right-hand side of identity (18).Proof. Let us �x x ∈ (−R0; R0) and show that g(x − �) is a onvergent power series with respet to �. Letg(�) = ∞
∑m=0 bm�m, |�| < R(g). Sine R0 < R(g), R(g)−|x| > 0. Therefore, if |�| < R(g)−|x|, then |x|+|�| < R(g),i.e.,

∞
∑m=0 ‖bm‖(|x|+ |�|)m = ∞

∑m=0 m
∑k=0Ckm‖bm‖|�|k|x|m−k < +∞:From here it follows thatg(x− �) = ∞

∑m=0 bm(x− �)m = ∞
∑m=0 m

∑k=0(−1)kbmCkm�kxm−k = ∞
∑k=0( ∞

∑m=kCkmbmxm−k)�k;
|�| < R(g) − |x|. Thus, if h(�) = g(x − �), then h ∈ E〈�〉, i.e., the right-hand side of identity (18) is de�nedorretly. Aording to de�nition 4.1,12A√�t +∞

∫

−∞

exp{

− �24A2t}g(x− �)d� = ∞
∑n=0 (2n)!n! A2n( ∞

∑m=2nC2nm bmxm−2n)tn= ∞
∑n=0 (2n)!n! A2n( ∞

∑m=0C2nm+2nbm+2nxm)tn = ∞
∑n;m=0 (m+ 2n)!m!n! A2nbm+2ntnxm = u(t; x);and this series onverges if |t| < T0, |x| < R0 (see Theorem 3.8). �Remark 4.5. Equalities (17) and (18) show that a solution u(t; x) of the Cauhy problem (12) an be onsideredas a \onvolution" of the initial ondition g(x) with the \distribution" HA.

5. Cauchy problem for an inhomogeneous equationLet f(t; x) be a vetor-valued funtion that is analyti in a neighborhood of zero andf(t; x) = ∞
∑n;m=0 fnmtnxm; |t| < T0; |x| < R0:Consider the following Cauhy problem:






�u�t = A2 �2u�2x + f(t; x);u(0; x) = 0: (19)By a solution of this problem we mean a vetor-valued funtion of real variables t and x that is analyti in aneighborhood of zero, satis�es the equation in this neighborhood, and satis�es the initial ondition.Theorem 5.1. Assume that the operator A is quasinilpotent and that the Fredholm resolvent (1 − zA2)−1 ofA2 is an entire funtion of exponential type. Then the Cauhy problem (19) has a unique analyti solution,whih is de�ned in a retangle |t| < T1, |x| < R1, where T1 = min{T0; �(1 − �)22RA2( )R02}, R1 = �R0,and �, �,  are arbitrary onstants from (0; 1). (Reall that RA2( ) is the radius of onvergene of the series (zA2) = ∞
∑n=0 (2n)!n! A2nzn, see Proposition 2:9).Proof. Let us �nd the solution of the Cauhy problem (19) in the following form:u(t; x) = ∞

∑k=0A2kuk(t; x): (20)
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It is easy to hek that this series formally satis�es the equation�u�t = A2 �2u�x2 + f(t; x)if �u0�t = f(t; x) and �uk+1�t = �2uk�x2 ; k ≥ 1:Taking into aount the zero initial ondition, we obtain the equalitiesu0(t; x) = t
∫0 f(�0; x)d�0and uk+1(t; x) = t

∫0 �2uk�x2 (�k+1; x)d�k+1 ; k ≥ 1:Hene, uk(t; x) = t
∫0 d�k �k

∫0 d�k−1 · · · �1
∫0 �2kf�x2k (�0; x)d�0; k ≥ 0:To prove that the formal sum (20) is an analyti solution, we onsider the funtions f and uk, k = 0; 1; : : : ,as holomorphi funtions of two omplex variables z and w in the polydisk |z| < T0, |w| < R0. Thus,f(z; w) = ∞

∑n;m=0 fnmznwm; u0(z; w) = ∞
∑n;m=0 fnmn+ 1zn+1wm;and uk(z; w) = ∞

∑n;m=0 (m+ 2k)!n!m!(n+ k + 1)!fnmzn+k+1wm;k = 0; 1; :::, |z| < T0, |w| < R0. Now take �, �, , ∈ (0; 1), r = R0, and s < min{T0; �(1 − �)22RA2( )R02}.There exists a onstant M1 suh that ‖fnm‖ ≤ M1snrm , n;m = 0; 1; :::. Hene, if |z| < s1 < s and |w| < r1 = �r,then
‖uk(z; w)‖ ≤M1 |z|k+1r2k ∞

∑n;m=0 (m+ 2k)!n!m!(n+ k + 1)!( |z|s )n( |w|r )m=M1(2k)! |z|k+1r2k ∞
∑m=0 (m+ 2k)!m!(2k)! ( |w|r )m ∞

∑n=0 n!(n+ k + 1)!( |z|s )n=M1(2k)! |z|k+1r2k 1(1− |w|r )2k+1 ∞
∑n=0 n!(n+ k + 1)!( |z|s )n

≤M1(2k)!sk+1r2k 1(1− |w|r )2k+1 1(1− |z|s )(k + 1)! = M1(2k)!sk+1(1− s1s )(k + 1)!(1− r1r )2k+1r2ksine
∣

∣

∣

∣

∞
∑n=0 n!(n+ k + 1)! tn∣

∣

∣

∣

= ∣

∣

∣

∣

t
∫0 d�k �k

∫0 d�k−1 : : : �1
∫0 d�01− �0 ∣

∣

∣

∣

≤ 1(1− |t|)(k + 1)! :Now set l = �RA2( ). Then the series ∞
∑k=0 (2k)!k! ‖A2k‖lk onverges (see Proposition 2.9). Therefore, there existsa onstant M2 > 0 suh that ‖A2k‖ ≤M2 k!(2k)!lk , k = 0; 1; :::. Hene,

‖A2kuk(t; x)‖ ≤ ‖A2k‖ ‖uk(t; x)‖ ≤ M1M2sk+1(1− s1s )(k + 1)(1− r1r )2k+1r2klk
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for all |z|≤s1, |w|≤r1, and sl(1− r1r )2 = s�(1− �)22RA2( )R02<1:Thus, the series ∞
∑k=0A2kuk(z; w) onverges uniformly at |z| ≤ s1, |w| ≤ r1 for all s1 < s and r1 < �R0, and thefuntion u(z; w) = ∞

∑k=0A2kuk(z; w) is holomorphi in the polydisk |z| < T1; |w| < R1, whereT1 = min{T0; �(1− �)22RA2( )R02} and R1 = �R0:Therefore, the funtion u(t; x), whih is the sum of the series (20), is analyti in the retangle |t| < T1, |x| < R1,and is a solution of the Cauhy problem (19). The uniqueness of the solution follows from Lemma 3.1. Thetheorem is proved. �Remark 5.2. Assume that the funtion f from the Cauhy problem (19) does not depend on t, i.e., f(t; x) =g(x), where g is a vetor-valued funtion that is analyti in a neighborhood of zero. If u(t; x) is a vetor-valuedfuntion that is analyti in a neighborhood of zero and v = �u�t , then it is easy to hek that u(t; x) is a solutionof the Cauhy problem (19) if and only if v(t; x) is a solution of the Cauhy problem (12):






�v�t = A2 �2v�x2 ;v(0; x) = g(x):Therefore, the impliation (3) ⇒ (1) in Theorem 3.8 an be dedued from Theorem 5.1. Moreover, the methodof solution �nding for the inhomogeneous equation in the form of a series with respet to degrees of a \smallparameter" an be used to solve the Cauhy problem (12):






�u�t = A2 �2u�x2 ;u(0; x) = g(x):In this ase, it is natural to �nd a solution in the formu(t; x) = g(x) + ∞
∑n=1 tnn!A2ngn(x): (21)Here gn+1 = g′′n(x), i.e., gn(x) = g(2n)(x), n ≥ 1. If the ondition of Proposition 2.9 is ful�lled, then theonvergene of series (21) an be proved in the same way as in Theorem 5.1.Example 5.3. Assume that the operator A satis�es the ondition of Theorem 5.1 and that b ∈ E. Consider theCauhy problem:







�u�t = A2 �2u�x2 + b1− x;u(0; x) = 0:If v = �u�t , then v is a solution of the Cauhy problem (13):










�v�t = A2 �2u�x2 ;v(0; x) = b1− x :Therefore, v(t; x) =  ( tA2(1−x)2) b1−x (see Proposition 3.2). Hene,u(t; x) = ∫ t0  ( �(1− x)2A2) b1− xd� = ∞
∑k=0 (2k)!(k + 1)!A2kb tk+1(1− x)2k+1 ;
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