ON ANALYTIC SOLUTIONS OF THE HEAT EQUATION WITH AN OPERATOR COEFFICIENT

A. Vershynina^{*} and S. Gefter^{*}

Let A be a bounded linear operator on a Banach space and let q a be vector-valued function that is analytic in a neighborhood of the origin of \mathbb{R} . We obtain conditions of the existence of analytic solutions for the Cauchy problem $\int \frac{\partial u}{\partial t} = A^2 \frac{\partial^2 u}{\partial x^2},$ Moreover, we consider a representation of the solution of this problem as a Poisson integral and $\int u(0,x) = g(x).$

study the Cauchy problem for the corresponding inhomogeneous equation. Bibliography: 22 titles.

1. INTRODUCTION

The Cauchy theorem on analytic solutions of differential equations with analytic coefficients is well known in the theory of ordinary differential equations (see, e.g., [1]). For the class of so-called normal partial differential equations, a similar theorem had been proved by Cauchy and Kovalevskaya [2–4]. Moreover, Kovalevskaya [5] showed that if an equation is not normal, then a Cauchy problem for this equation may fail to have analytic solutions. Let us consider the famous example of Kovalevskava:

$$\begin{cases} \frac{\partial u}{\partial t} = a^2 \frac{\partial^2 u}{\partial x^2}, \\ u(0, x) = \frac{b}{1 - x} \end{cases}$$
(1)

(in what follows, it is convenient for us to consider an arbitrary coefficient b in the initial condition).

It is easy to check that the following power series:

$$\sum_{n,m=0}^{\infty} \frac{(m+2n)!}{m!n!} a^{2n} b t^n x^m$$
(2)

is a *formal* solution of problem (1). Therefore, for $a \neq 0$ and $b \neq 0$, the Cauchy problem (1) does not have solutions that are *analytic* in a neighborhood of zero. The research initiated by Kovalevskaya was continued in numerous papers (see, e.g., [6–18]).

In this paper, we consider the following *operator analog* of the Cauchy problem (1):

r

$$\begin{cases} \frac{\partial u}{\partial t} = A^2 \frac{\partial^2 u}{\partial x^2}, \\ u(0,x) = \frac{b}{1-x}, \end{cases}$$
(3)

and a more general Cauchy problem:

$$\begin{cases} \frac{\partial u}{\partial t} = A^2 \frac{\partial^2 u}{\partial x^2}, \\ u(0,x) = g(x). \end{cases}$$
(4)

Here A is a bounded linear operator on a Banach space $E, b \in E$, and g is a vector-valued function that is analytic in a neighborhood of the origin. By formal analogy with the equation in (1), Eq. (4) is also called "the heat equation." Note that in some interesting examples, our "heat equation" is a hyperbolic partial differential equation (see Remark 3.7). We consider solutions of the Cauchy problem (4) that are analytic in a neighborhood of the origin of $\mathbb{R} \times \mathbb{R}$. By a solution of problem (4) we mean a *local* analytic solution, i.e., a vector-valued function of real variables t and x that is analytic in a neighborhood of zero, satisfies the equation in this neighborhood,

*V. N. Karazin Kharkiv National University, Kharkiv, Ukraine, e-mail: gefter@univer.kharkov.ua, avershynina@yahoo.com.

UDC 517.968: 517.983

Translated from Zapiski Nauchnykh Seminarov POMI, Vol. 355, 2008, pp. 139–162. Original article submitted June 2, 2008.

and satisfies the initial condition in a neighborhood of the origin of \mathbb{R} . The *formal* solution of Cauchy problem (3) looks like the scalar one:

$$\sum_{n,m=0}^{\infty} \frac{(m+2n)!}{m!n!} A^{2n} b t^n x^m.$$
 (5)

It is obvious that if A = 0, then the function $u(t, x) = \sum_{n=0}^{\infty} bx^n = \frac{b}{1-x}$ is an analytic solution of problem (3).

Similarly, there exists an analytic solution of problem (3) if A is a *nilpotent* operator, i.e., $A^k = 0$ for some k. We also consider more general operators that are close to zero in the spectral sense (namely, *quasinilpotent* ones). Recall that an operator A is called quasinilpotent if the spectrum $\sigma(A)$ of A consists of the single point $\lambda = 0$. We show that series (5) can be convergent in a neighborhood of the origin if A is a quasinilpotent operator satisfying some additional assumption (see Proposition 3.2).

Now we formulate the main result of our paper.

Theorem 3.8. The following conditions are equivalent:

(1) The Cauchy problem (3) has an analytic solution for each vector $b \in E$;

(2) the Cauchy problem (4) has an analytic solution for any vector-valued function g(x) that is analytic in a neighborhood of zero;

(3) the operator A is quasinilpotent, and the Fredholm resolvent $F_{A^2}(z) = (1 - zA^2)^{-1}$ of the operator A^2 is an entire function of exponential type (i.e., $||F_{A^2}(z)|| \leq Ce^{\beta|z|}$ for some constants C and β).

Moreover, if these conditions are fulfilled, then the solution of the Cauchy problem (4) is unique and has the following explicit form:

$$u(t,x) = g(x) + \sum_{n=1}^{\infty} \frac{t^n}{n!} A^{2n} g^{(2n)}(x)$$

(see Remark 5.2).

Thus, if the Cauchy problem (4) has an analytic solution for any analytic initial condition, then the operator A is close to zero in the spectral sense. In particular, in the finite-dimensional case, the equation from the Cauchy problem (4) is of the form

$$\frac{\partial u_k}{\partial t} = \sum_{j=1}^m c_{kj} \frac{\partial^2 u_j}{\partial x^2}, \quad k = 1, \dots, m \quad (m = \dim E),$$

where the matrix $C = (c_{kj})$ is nilpotent (see Corollary 3.4). Certainly, in the given particular case, this fact is a simple corollary of the general theorem obtained by Mizohata (see [10, Sec. 3, Theorem 1]).

Theorem 3.8 can be considered as one more illustration of unusual properties of objects connected with quasinilpotent operators (see, for example, [19, Secs. 4.6 and 4.10] and [22]).

Some examples of explicit solutions of the Cauchy problem (3) are given in Sec. 3 (see Corollaries 3.3–3.5, Example 3.6, and Remark 3.7).

Our study of the Cauchy problem (4) is based on the concept of A-holomorphic formal power series (see Definition 2.1), which was investigated in the paper [22]. In [22], this concept was used in the study of holomorphic solutions of the equation $z^2 Aw' + g(z) = w$, where A is a quasinilpotent linear operator on a Banach space. Let us note that each condition of the Theorem 3.8 is equivalent to the A^2 -holomorphicity of the formal power series $\psi(\zeta) = \sum_{n=0}^{\infty} \frac{(2n)!}{n!} \zeta^n$ (see Proposition 2.9). The concept of A-holomorphicity is considered in Sec. 2.

In Sec. 4, we consider a representation of the solution of the Cauchy problem (4) as a Poisson integral. In our situation (i.e., if A is quasinilpotent), the operator analog of the heat kernel $H_A(t,\xi) = \frac{1}{2A\sqrt{\pi t}} \exp\left\{-\frac{\xi^2}{4A^2t}\right\}$ certainly has no usual sense. We consider H_A as a vector-valued distribution, where the space of "test functions" is the space of all convergent power series with coefficients from E (see Definition 4.1 and Proposition 4.3). Then we show that the solution of the Cauchy problem (4) can be represented as the convolution of H_A with the initial condition g (see Theorem 5.1).

In Sec. 5, we study the Cauchy problem for the inhomogeneous equation:

$$\begin{cases} \frac{\partial u}{\partial t} = A^2 \frac{\partial^2 u}{\partial x^2} + f(t, x), \\ u(0, x) = 0. \end{cases}$$

We show that if the conditions of Theorem 3.8 are fulfilled, then the analytic solution of this Cauchy problem can be found as a series with respect to the "small parameter" A (see Theorem 5.1):

$$u(t,x) = \sum_{k=0}^{\infty} A^{2k} u_k(t,x).$$

2. Preliminaries

Let *E* be a complex Banach space, let $A : E \to E$ be a bounded linear operator, let $b \in E$, and let $f(\zeta) = \sum_{n=0}^{\infty} c_n \zeta^n$ be a formal power series with coefficients from \mathbb{C} . Define

$$f(zA) = \sum_{n=0}^{\infty} c_n A^n z^n, \quad z \in \mathbb{C},$$
(6)

 and

$$f(zA)b = \sum_{n=0}^{\infty} c_n A^n b z^n, \quad z \in \mathbb{C}.$$
(7)

Then f(zA) is a power series with coefficients from the algebra B(E) of all bounded operators in the space E, and f(zA)b is a power series with coefficients from E. The radius of convergence of series (6) is denoted by $R_A(f)$, and that of series (7) is denoted by $R_{A,b}(f)$.

Definition 2.1. The power series $f(\zeta)$ is called A-holomorphic if $R_A(f) > 0$ and (A, b)-holomorphic if $R_{A,b}(f) > 0$.

It is obvious that an A-holomorphic power series is (A, b)-holomorphic for all vectors $b \in E$, and $R_{A,b}(f) \ge R_A(f)$. Moreover, if $|z| < R_A(f)$, then the sum of the series in the right-hand side of equality (7) is the result of the action of the operator f(zA) on b.

Remark 2.2. Assume that the power series f has a positive radius of convergence R(f). Then this series is A-holomorphic for each bounded operator A. Moreover, if $\rho(A)$ is the spectral radius of the operator A and $|z|\rho(A) < R(f)$, then f(zA) is well defined as the action of the holomorphic function f on the operator zA.

Example 2.3. Assume that $b \in \ker A^m$ for some $m \in \mathbb{N}$. Then

$$f(zA)b = \sum_{n=0}^{m-1} c_n A^n b z^n,$$

i.e., every power series $f(\zeta)$ is (A, b)-holomorphic.

If the space E is finite-dimensional, then the converse statement also holds in the situation which is most interesting for us (see [22, Proposition 1.4]).

Proposition 2.4. Let dim $E < \infty$, let f be a power series, and let the radius of convergence of f be 0. If f is (A, b)-holomorphic, then $b \in \ker A^m$ for some $m \in \mathbb{N}$.

In the Hilbert space case, the following analog of Proposition 2.4 is true.

Proposition 2.5. Let E be a Hilbert space, let $f(\zeta) = \sum_{n=0}^{\infty} c_n \zeta^n$ be a power series, and let the radius of convergence of f be equal to zero. If A is a normal bounded operator and f is (A, b)-holomorphic, then $b \in \ker A$.

Proof. Let $R_{A,b}(f) > 0$. According to the vector analog of the Cauchy–Hadamard formula,

$$\frac{1}{R_{A,b}(f)} = \overline{\lim_{n \to \infty} \sqrt[n]{|c_n| ||A^n b||}} < \infty.$$

Let us show that there exists $\lim_{n\to\infty} \sqrt[n]{\|A^n b\|}$. According to the spectral theorem, we can identify E with $L^2(X,\mu)$ for some measure space (X,μ) and consider A as the multiplication operator:

$$(Ab)(x) = a(x)b(x), \text{ where } a \in L^{\infty}(X, \mu).$$

Then $\sqrt[n]{\|A^nb\|} = \sqrt[2n]{\int_X} |a(x)|^{2n} |b(x)|^2 d\mu$, and this sequence converges to the norm of a(x) in the space $L^{\infty}(X, \mu_b)$, where $d\mu_b = |b(x)|^2 d\mu$. On the other hand, $\overline{\lim_{n \to \infty}} \sqrt[n]{|c_n|} = \infty$. Hence, $\lim_{n \to \infty} \sqrt[n]{\|A^nb\|} = 0$. Therefore, a(x) = 0 μ_b -almost everywhere, i.e., a(x)b(x) = 0 μ -almost everywhere. Thus, Ab = 0. \Box

Using Example 2.3, it is easy to find examples of (A, b)-holomorphic formal power series that are not A-holomorphic. However, using the Baire category theorem, one can prove the following statement (see [22, Theorem 1.5]).

Theorem 2.6. If the formal power series f is (A,b)-holomorphic for all $b \in E$, then it is A-holomorphic.

The following statement shows that if A is not quasinilpotent, then the concept of A-holomorphic formal power series coincides with the usual concept of holomorphic power series (see [22, Proposition 1.7]).

Proposition 2.7. If the operator A has a positive spectral radius, then a power series f is A-holomorphic if and only if it has a positive radius of convergence. Thus, if f has zero radius of convergence and f is A-holomorphic, then A is quasinilpotent.

The following two formal power series play an important role in our further study:

$$\varphi(\zeta) = \sum_{n=0}^{\infty} n! \zeta^n \text{ and } \psi(\zeta) = \sum_{n=0}^{\infty} \frac{(2n)!}{n!} \zeta^n.$$

Lemma 2.8. Let $A : E \to E$ be a bounded linear operator and let $b \in E$. Then (1) ψ is (A, b)-holomorphic if and only if φ is (A, b)-holomorphic; (2) ψ is A-holomorphic if and only if φ is A-holomorphic.

Proof. It is enough to notice that, according to the Stirling formula,

$$\sqrt[n]{\frac{(2n)!}{n!}} \sim \frac{4n}{e}$$
 and $\sqrt[n]{n!} \sim \frac{n}{e}$.

Recall that an entire function g(z) with values in a Banach space is called a function of exponential type if $||g(z)|| \leq Ce^{\beta|z|}$ for some constants C and β . Recall also that a bounded linear operator A is quasinilpotent if and only if its Fredholm resolvent $(1 - zA)^{-1}$ is an entire function (see [19, Chap. 4]).

Proposition. The Fredholm resolvent $(1 - zA)^{-1}$ of the operator A is an entire function of exponential type if and only if the series $\psi(\zeta) = \sum_{n=0}^{\infty} \frac{(2n)!}{n!} \zeta^n$ is A-holomorphic.

Proof. It follows from Lemma 2.8 that we can consider the power series $\varphi(\zeta) = \sum_{n=0}^{\infty} n! \zeta^n$ instead of $\psi(\zeta)$. Let φ be A-holomorphic. Then

$$\frac{1}{R_A(\varphi)} = \overline{\lim_{n \to \infty}} \sqrt[n]{n!} ||A^n|| < +\infty, \tag{8}$$

and the operator A is quasinilpotent. Now identity (8) is equivalent to the statement that the entire function $(1-zA)^{-1} = \sum_{n=0}^{\infty} A^n z^n$ is of exponential type (see [21, p. 95]). \Box

Let us give an example where the function $\psi(zA)$ can be computed explicitly.

Example 2.10. Let E = C[0, 1] and let A_1 be the integration operator:

$$(A_1b)(s) = \int_0^s b(y)dy, \quad b \in E.$$

It is well known that

$$(A_1^n b)(s) = \frac{1}{(n-1)!} \int_0^s (s-y)^{n-1} b(y) dy,$$
(9)

 $||A_1^n|| \le \frac{1}{n!}$, and $A_1 = A^2$, where

$$(Ab)(s) = \frac{1}{\sqrt{\pi}} \int_{0}^{s} \frac{b(y)}{\sqrt{s-y}} dy.$$

It is easy to check that the series ψ is A_1 -holomorphic and $R_{A_1}(\psi) = 1/4$, i.e., ψ is A^2 -holomorphic and $R_{A_2}(\psi) = 1/4$. For the explicit calculation of the operator $\psi(zA^2)$, note that

$$1 + \sum_{n=1}^{\infty} \frac{(2n)!}{(n!)^2} \left(\frac{x}{2}\right)^{2n} = \frac{1}{\sqrt{1-x^2}}, \quad |x| < 1.$$

Hence,

$$\sum_{n=1}^{\infty} \frac{(2n)!}{n!(n-1)!} (\frac{x}{2})^{2n-2} = \frac{2}{(1-x^2)^{3/2}}, \quad |x| < 1,$$

 and

$$\sum_{n=1}^{\infty} \frac{(2n)!}{n!(n-1)!} \gamma^{n-1} = \frac{2}{(1-4\gamma)^{3/2}}, \quad |\gamma| < \frac{1}{4}.$$
 (10)

Now from (9) and (10) we deduce that

$$(\psi(zA^2)b)(s) = b(s) + 2z \int_0^s \frac{b(y)dy}{(1 - 4z(s - y))^{3/2}}, \quad |z| < 1/4.$$
(11)

3. Main result

Let E be a Banach space, let $A : E \to E$ a bounded linear operator, and let g be a E-valued function that is analytic in a neighborhood of zero. In this section, we consider the problem of solution existence for the Cauchy problem

$$\begin{cases} \frac{\partial u}{\partial t} = A^2 \frac{\partial^2 u}{\partial x^2}, \\ u(0,x) = g(x). \end{cases}$$
(12)

By a solution of problem (12) we mean a *local analytic solution*, i.e., a vector-valued function of real variables t and x that is analytic in a neighborhood of zero, satisfies the equation in this neighborhood, and the initial condition in a neighborhood of the point $x_0 = 0$.

At first, consider only an algebraic situation in which g is a formal power series.

Lemma 3.1. Let $g(x) = \sum_{m=0}^{\infty} b_m x^m$ be a formal power series with coefficients from E. Then the Cauchy problem (12) has a unique formal solution

$$u(t,x) = \sum_{n,m=0}^{\infty} \frac{(m+2n)!}{m!n!} A^{2n} b_{m+2n} t^n x^m = \sum_{n=0}^{\infty} \frac{t^n}{n!} A^{2n} g^{(2n)}(x).$$

Proof. Assume that

$$u(t,x) = \sum_{n,m=0}^{\infty} c_{nm} t^n x^m,$$

 $c_{nm} \in E$, is a formal solution of the Cauchy problem (12). After a formal substitution into the equation, we see that

$$\sum_{n,m=0}^{\infty} (n+1)c_{n+1m}t^n x^m = \sum_{n,m=0}^{\infty} (m+2)(m+1)A^2 c_{nm+2}t^n x^m$$

 and

$$\sum_{m=0}^{\infty} c_{0m} x^m = \sum_{m=0}^{\infty} b_m x^m.$$

Hence,

$$(n+1)c_{n+1m} = (m+2)(m+1)A^2c_{nm+2}$$

 and

$$c_{0m} = b_m, \quad n, m \ge 0,$$

i.e.,

$$c_{n,m} = \frac{(m+2n)!}{m!n!} A^{2n} b_{m+2n}, \quad n,m \ge 0$$

Thus,

$$u(t,x) = \sum_{n,m=0}^{\infty} \frac{(m+2n)!}{m!n!} A^{2n} b_{m+2n} t^n x^m$$

is the unique formal solution.

It is easy to check that this solution can be represented as $u(t,x) = \sum_{n=0}^{\infty} \frac{t^n}{n!} A^{2n} g^{(2n)}(x)$, and the expression on the right-hand side is a well-defined formal power series in variables t, x. The lemma is proved. \Box

Now for $b \in E$ we consider the following special Cauchy problem:

$$\begin{cases} \frac{\partial u}{\partial t} = A^2 \frac{\partial^2 u}{\partial x^2}, \\ u(0, x) = \frac{b}{1 - x}. \end{cases}$$
(13)

Proposition 3.2. The Cauchy problem (13) has a solution if and only if the formal power series $\psi(\zeta) = \sum_{n=0}^{\infty} \frac{(2n)!}{n!} \zeta^n$ is (A^2, b) -holomorphic (see Definition 2.1). Moreover, the solution is unique, and it can be represented by the following two series:

$$u(t,x) = \sum_{n,m=0}^{\infty} \frac{(m+2n)!}{m!n!} A^{2n} b t^n x^m$$

and

$$u(t,x) = \psi\left(\frac{tA^2}{(1-x)^2}\right)\frac{b}{1-x} = \sum_{n=0}^{\infty} \frac{(2n)!}{n!} \frac{A^{2n}bt^n}{(1-x)^{2n+1}},$$

 $|t| < T, |x| < R, \text{ where } R \in (0,1) \text{ and } T = (1-R)^2 R_{A^2,b}(\psi).$

Proof. According to Lemma 3.1, the unique formal solution of the Cauchy problem (13) is

$$u(t,x) = \sum_{n,m=0}^{\infty} \frac{(m+2n)!}{m!n!} A^{2n} b t^n x^m.$$

Assume that this series converges for |t| < T and |x| < R, where $R \in (0, 1)$. Since

$$\sum_{m=0}^{\infty} \frac{(m+2n)!}{m!n!} x^m = \frac{1}{(1-x)^{2n+1}},$$
$$u(t,x) = \sum_{n=0}^{\infty} \frac{(2n)!}{n!} \left(\sum_{m=0}^{\infty} \frac{(m+2n)!}{m!n!} x^m\right) A^{2n} bt^n = \sum_{n=0}^{\infty} \frac{(2n)!}{n!} \frac{1}{(1-x)^{2n+1}} A^{2n} bt^n.$$

Therefore,

$$\overline{\lim_{n \to \infty} \sqrt[n]{\frac{(2n)!}{n!}}} \frac{1}{(1-x)^{2n+1}} \|A^{2n}b\| < +\infty,$$

i.e., ψ is (A^2, b) -holomorphic.

., ψ is (A^2, b) -holomorphic. On the other hand, let ψ be (A^2, b) -holomorphic. Then the power series $\sum_{n=0}^{\infty} \frac{(2n)!}{n!} A^{2n} b \frac{t^n}{(1-x)^{2n+1}}$ converges if $\frac{|t|}{(1-x)^2} < R_{A^2,b}(\psi).$ Therefore, if $R \in (0,1)$, then the power series $u(t,x) = \sum_{n,m=0}^{n-\infty} \frac{(m+2n)!}{m!n!} A^{2n} bt^n x^m$ converges for |x| < R, $|t| < (1 - R)^2 R_{A^2 b}(\psi)$, and

$$u(t,x) = \sum_{n=0}^{\infty} \frac{(2n)!}{n!} \frac{A^{2n}bt^n}{(1-x)^{2n+1}}, \quad |t| < T, \quad |x| < R. \qquad \Box$$

According to 2.4 and 2.5, we deduce the following corollaries from Proposition 3.2.

Corollary 3.3. Let dim $E < +\infty$. Then the Cauchy problem (13) has a solution if and only if $b \in \ker A^k$ for some $k \in \mathbb{N}$. Moreover, if $b \in \ker A^{2N+1}$, then the solution of this problem is of the form

$$u(t,x) = \sum_{n=0}^{N} \frac{(2n)!}{n!} \frac{A^{2n}bt^n}{(1-x)^{2n+1}}, \quad t \in \mathbb{R}, \quad |x| < 1.$$

Corollary 3.4. Let dim $E < +\infty$. Then the Cauchy problem (13) has a solution for each vector $b \in E$ if and only if the operator A is nilpotent.

Corollary 3.5. Let E be a Hilbert space, let $b \in E$, and let A be a bounded normal operator. Then the Cauchy problem (13) has a solution if and only if $b \in \ker A$.

Now we give an example of a nontrivial explicit solution of Cauchy problem (13).

Example 3.6. Let E = C[0, 1] and let A be the square root from an integration operator:

$$(Ab)(s) = \frac{1}{\sqrt{\pi}} \int_{0}^{s} \frac{b(y)}{\sqrt{s-y}} dy.$$

Then ψ is A^2 -holomorphic, and $R_{A^2,b}(\psi) = 1/4$ (see Example 2.10). According to Proposition 3.2, the solution of the Cauchy problem (13) is of the form

$$u(t,x) = \psi\left(\frac{tA^2}{(1-x)^2}\right)\frac{b}{1-x}, \quad x \in (-1,1), \quad |t| < \frac{1}{4}(1-x)^2.$$

Now equality (11) in Example 2.10 shows that

$$[u(t,x)](s) = \frac{b(s)}{1-x} + 2t \int_{0}^{s} \frac{b(y)dy}{((1-x)^2 - 4t(s-y))^{3/2}},$$
(14)

 $x \in (-1,1), |t| < \frac{1}{4}(1-x)^2, s \in [0,1].$

Remark 3.7. Example 3.6 shows that the series sum $\psi(zA^2) = \sum_{n=0}^{\infty} \frac{(2n)!}{n!} A^{2n} z^n$ presents implicitly in a formula for a solution of the 2-D wave equation with some special initial conditions. Indeed, in this example, the Cauchy problem (13) can be written in the following form:

$$\begin{cases} \frac{\partial u}{\partial t}(t,x,s) = \int_{0}^{s} \frac{\partial^{2} u}{\partial x^{2}}(t,x,y) dy, \\ u(0,x,s) = \frac{b(s)}{1-x}, \quad s \in [0,1]. \end{cases}$$

Thus, the function u(t, x, s) satisfies the partial differential equation:

$$\frac{\partial}{\partial s} \left(\frac{\partial u}{\partial t} \right) = \frac{\partial^2 u}{\partial x^2}$$

and the conditions $u(0, x, s) = \frac{b(s)}{1-x}$, $s \in [0, 1]$, and $\frac{\partial u}{\partial t}(t, x, 0) = 0$.

Now from (14) we conclude that the function

$$u(t,x,s) = \frac{b(s)}{1-x} + 2t \int_{0}^{s} \frac{b(y)dy}{((1-x)^{2} - 4t(s-y))^{3/2}}, \quad x \in (-1,1), \quad |t| < \frac{1}{4}(1-x)^{2},$$

 $s \in [0, 1]$, is a solution of Eq. (15). If $b \in C^1[0, 1]$, then the function u(t, x, s) is differentiable with respect to s. In this case, Eq. (15) may be rewritten in the usual form $\frac{\partial^2 u}{\partial t \partial s} = \frac{\partial^2 u}{\partial x^2}$. By a linear substitution, this equation can be reduced to the wave equation.

Finally, consider the Cauchy problem (12) with an arbitrary analytic vector-valued function g, where

$$g(x) = \sum_{m=0}^{\infty} b_m x^m, \quad |x| < R(g).$$

Theorem 3.8. The following conditions are equivalent:

(1) The Cauchy problem (13) has an analytic solution for each vector $b \in E$;

(2) the Cauchy problem (12) has an analytic solution for each vector-valued function g(x) that is analytic in a neighborhood of zero;

(3) the operator A is quasinilpotent (i.e., the spectrum of A contains of the point 0 only), and the Fredholm resolvent $(1 - zA^2)^{-1}$ of the operator A^2 is an entire function of exponential type.

Moreover, if at least one of these conditions is true, then the Cauchy problem (12) has a unique analytic solution

$$u(t,x) = \sum_{n,m=0}^{\infty} \frac{(m+2n)!}{m!n!} A^{2n} b_{m+2n} t^n x^m,$$

and this series converges for $|t| < T_0$, $|x| < R_0$, where $T_0 = \alpha_0 R_{A^2}(\psi) R(g)^2$, $R_0 = \beta_0 \beta_1 R(g)$, and α_0 , β_0 , β_1 are arbitrary constants satisfying the conditions α_0 , β_0 , $\beta_1 \in (0, 1)$ and $\alpha_0 < \beta_1^2(1 - \beta_0)^2$.

Proof. According to Proposition 3.2 and Theorem 2.6, condition (1) is equivalent to the fact that the power series $\psi(\zeta) = \sum_{n=0}^{\infty} \frac{(2n)!}{n!} \zeta^n$ is A^2 -holomorphic. Hence, conditions (1) and (3) are equivalent (see Lemma 2.8 and Proposition 2.9). It is obvious that (1) follows from (2). We claim that condition (2) follows from the A^2 -holomorphicity of the power series $\psi(\zeta)$. According to Lemma 3.1,

$$u(t,x) = \sum_{n,m=0}^{\infty} \frac{(m+2n)}{m!n!} A^{2n} b_{m+2n} t^n x^m$$

is the unique formal solution of the Cauchy problem (12). Now we show that there exist positive T_0 and R_0 such that this series converges for $|t| < T_0, |x| < R_0$. Consider $c_1, c_2, c_3, c_4 \in (0, 1)$ with $c_3 < c_1 c_2^2 (1 - c_4)^2$ (for example, $c_1 = 9/10, c_2 = 3/4, c_3 = 1/8$, and $c_4 = 1/2$) and $r_1 = c_1 R_{A^2}(\psi)$. Then the series $\sum_{n=0}^{\infty} \frac{(2n)!}{n!} ||A^{2n}|| r_1^n$ converges. Therefore, there exists a constant M_1 such that

$$\frac{(2n)!}{n!} \|A^{2n}\| \le \frac{M_1}{r_1^n}, \quad n = 0, 1, \dots$$

Let $r_2 = c_2 R(g)$. Then there exists a constant $M_2 > 0$ such that $||b_m|| \leq \frac{M_2}{r_2^m}$, $m = 0, 1, \ldots$ Hence,

$$\frac{(2n)!}{n!} \sum_{m=0}^{\infty} \frac{(m+2n)!}{m!(2n)!} \|A^{2n}\| \|b_{m+2n}\| \|x\|^m \le \frac{(2n)!}{n!} \frac{M_2 \|A^{2n}\|}{r_2^{2n}} \sum_{m=0}^{\infty} \frac{(m+2n)!}{m!(2n)!} \left(\frac{|x|}{r_2}\right)^m$$

$$=\frac{(2n)!M_2\|A^{2n}\|}{n!r_2^{2n}}\frac{1}{(1-\frac{|x|}{r_2})^{2n+1}} \le \frac{M_1M_2}{r_1^nr_2^{2n}}\frac{1}{(1-\frac{|x|}{r_2})^{2n+1}}$$

for $|x| < r_2$ and $n = 0, 1, \ldots$

Now let $T_0 = c_3 R_{A^2}(\psi) R(g)^2$ and $R_0 = c_2 c_4 R(g)$. If $|t| < T_0$ and $|x| < R_0$, then

$$\frac{|t|}{r_1r_2^2(1-\frac{|x|}{r_2})^2} < \frac{c_3R_{A^2}(\psi)R(g)^2}{c_1R_{A^2}(\psi)c_2^2R(g)^2(1-\frac{R_0}{r_2})^2} = \frac{c_3}{c_1c_2^2(1-c_4)^2} < 1,$$

i.e., the series

$$\sum_{n=0}^{\infty} \frac{1}{r_1^n r_2^{2n}} \frac{|t|^n}{(1-\frac{|x|}{r_2})^{2n+1}}$$

 and

$$\sum_{n=0}^{\infty} \frac{(2n)!}{n!} \left(\sum_{m=0}^{\infty} \frac{(m+2n)!}{m!(2n)!} \|A^{2n}\| \|b_{m+2n}\| \|x\|^m \right) |t|^n$$

converge. Thus, the series

$$\sum_{n,m=0}^{\infty} \frac{(m+2n)!}{m!n!} \|A^{2n}\| \|b_{m+2n}\| \|x\|^m |t|^n$$

converges for $|t| < T_0$ and $|x| < R_0$. To complete the proof, it is enough to take $\alpha_0 = c_3$, $\beta_0 = c_4$, and $\beta_1 = c_1^{1/2}c_2$. The theorem is proved. \Box

4. Solution representation by a Poisson integral

In the classic case $(E = \mathbb{C} \text{ and } A > 0)$, it is well known that the solution of the Cauchy problem (12) with a bounded continuous initial function g(x) can be written as the Poisson integral:

$$u(t,x) = \frac{1}{2A\sqrt{\pi t}} \int_{-\infty}^{+\infty} \exp\left\{-\frac{\xi^2}{4A^2t}\right\} g(x-\xi)d\xi$$

In the vector case, if the operator A is noninvertible, then the expression $\frac{1}{2A\sqrt{\pi t}} \exp\left\{-\frac{\xi^2}{4A^2t}\right\}$ has no direct sense. On the other hand, if $E = \mathbb{C}$, A > 0, and $g \in E[\xi]$, $g(\xi) = \sum_{m=0}^{2p} b_m \xi^m$, then it is easy to check that

$$\int_{-\infty}^{+\infty} \frac{1}{2A\sqrt{\pi t}} \exp\left\{-\frac{\xi^2}{4A^2t}\right\} g(\xi)d\xi = \sum_{n=0}^{p} \frac{(2n)!}{n!} A^{2n} b_{2n} t^n.$$

This equality gives us a basis for the following definition of the Poisson integral in the space of formal power series.

Let *E* be a Banach space and let $E[[\xi]]$ be the linear space of formal power series with coefficients from *E*. For r > 0 and $g(\xi) = \sum_{k=0}^{\infty} b_k \xi^k \in E[[\xi]]$, we set

$$||g||_r = \sum_{k=0}^{\infty} ||b_k|| r^k, \quad E_r \langle \xi \rangle = \{g \in E[[\xi]] : ||g||_r < +\infty\},$$

and $E\langle\xi\rangle = \bigcup_{r>0} E_r\langle\xi\rangle$. Then $(E_r\langle\xi\rangle, \|\cdot\|)$ is a Banach space, and $E\langle\xi\rangle$ is the linear space of all convergent power series with coefficients from E. We furnish $E\langle\xi\rangle$ with the topology of inductive limit of Banach spaces $E_r\langle\xi\rangle$ (see [20, Chap. 1], where the case $E = \mathbb{C}$ is considered in a similar way).

Definition 4.1. Let $A: E \to E$ be a bounded linear operator. For $g \in E\langle \xi \rangle$ and $g(\xi) = \sum_{k=0}^{\infty} b_k \xi^k$, we define

$$\frac{1}{2A\sqrt{\pi t}} \int_{-\infty}^{+\infty} \exp\left\{-\frac{\xi^2}{4A^2t}\right\} g(\xi)d\xi = \sum_{n=0}^{\infty} \frac{(2n)!}{n!} A^{2n} b_{2n} t^n \tag{16}$$

(we consider the right-hand side of equality (16) as an element of E[[t]]).

Remark 4.2 We note that if A = 0, then

$$\frac{1}{2A\sqrt{\pi t}}\int_{-\infty}^{+\infty} \exp\left\{-\frac{\xi^2}{4A^2t}\right\}g(\xi)d\xi = g(0).$$

Proposition 4.3. Assume that A is quasinilpotent and that the Fredholm resolvent of A^2 is an entire function of exponential type. Then the series in the right-hand side of equality (16) has a positive radius of convergence. Moreover, if we define

$$(H_A g)(t) := \frac{1}{2A\sqrt{\pi t}} \int_{-\infty}^{+\infty} \exp\left\{-\frac{\xi^2}{4A^2 t}\right\} g(\xi) d\xi,$$
(17)

then H_A is a continuous linear map from $E\langle\xi\rangle$ to $E\langle t\rangle$.

Proof. If $g(\xi) = \sum_{k=0}^{\infty} b_k \xi^k$, then

$$(H_A g)(t) = \sum_{n=0}^{\infty} \frac{(2n)!}{n!} A^{2n} b_{2n} t^n.$$

According to 2.9,

$$\frac{1}{R_{A^2}(\psi)} = \overline{\lim_{n \to \infty} \sqrt[n]{(2n)!}} \|A^{2n}\| < +\infty$$

Therefore,

$$\overline{\lim_{n \to \infty} \sqrt[n]{(2n)!}} \|A^{2n}\| \|b_{2n}\| = \overline{\lim_{n \to \infty} \sqrt[n]{(2n)!}} \|A^{2n}\| \sqrt[n]{\|b_{2n}\|} \le \frac{1}{R_{A^2}(\psi)R(g)^2}$$

Thus, if $|t| < R_{A^2}(\psi)R(g)^2$, then the series in the right-hand side of equality (16) converges, i.e., $H_Ag \in E\langle t \rangle$. It is obvious that H_A is linear. Let us show that H_A is continuous. To this end, we show that the all restrictions $H_A|_{E_r\langle\xi\rangle} : E_r\langle\xi\rangle \to E\langle t \rangle, \ r > 0$, are continuous. Take $r_0 > 0$ and $g \in E_{r_0}\langle\xi\rangle$. According to Proposition 2.9, $\frac{(2n)!}{n!} \|A^{2n}\| \leq M^n, \ n \in \mathbb{N}$, for some M > 0. Let $r_1 = \frac{r_0^2}{M}$. Then

$$\|H_A g\|_{r_1} = \sum_{n=0}^{\infty} \frac{(2n)!}{n!} \|A^{2n} b_{2n,k}\| r_1^n \le \sum_{n=0}^{\infty} \|b_{2n,k}\| r_0^{2n} \le \|g\|_{r_0}$$

Therefore, H_A is a continuous map from $E_{r_0}\langle\xi\rangle$ to $E_{r_1}\langle t\rangle$. Hence, H_A is continuous as a map from $E_{r_0}\langle\xi\rangle$ to $E\langle t\rangle$. \Box

Theorem 4.4. Let g be a vector-valued function that is analytic in a neighborhood of zero and $g(x) = \sum_{m=0}^{\infty} b_m x^m$, |x| < R(g). Assume that A is quasinilpotent and that the Fredholm resolvent of A^2 is an entire function of exponential type. Consider T_0 and R_0 which were defined in Theorem 3.8. Then the solution of Cauchy problem (12) can be represented as

$$u(t,x) = \frac{1}{2A\sqrt{\pi t}} \int_{-\infty}^{+\infty} \exp\left\{-\frac{\xi^2}{4A^2t}\right\} g(x-\xi)d\xi,$$
(18)

 $|t| < T_0$, $|x| < R_0$, i.e., for each fixed $x \in (-R_0, R_0)$, the right-hand side of equality (17) is a convergent power series in $t \in (-T_0, T_0)$ which coincides with the series in the right-hand side of identity (18).

Proof. Let us fix $x \in (-R_0, R_0)$ and show that $g(x - \xi)$ is a convergent power series with respect to ξ . Let $g(\xi) = \sum_{m=0}^{\infty} b_m \xi^m, |\xi| < R(g)$. Since $R_0 < R(g), R(g) - |x| > 0$. Therefore, if $|\xi| < R(g) - |x|$, then $|x| + |\xi| < R(g)$, i.e.,

$$\sum_{m=0}^{\infty} \|b_m\| (|x|+|\xi|)^m = \sum_{m=0}^{\infty} \sum_{k=0}^m C_m^k \|b_m\| |\xi|^k |x|^{m-k} < +\infty.$$

From here it follows that

$$g(x-\xi) = \sum_{m=0}^{\infty} b_m (x-\xi)^m = \sum_{m=0}^{\infty} \sum_{k=0}^m (-1)^k b_m C_m^k \xi^k x^{m-k} = \sum_{k=0}^{\infty} \left(\sum_{m=k}^{\infty} C_m^k b_m x^{m-k} \right) \xi^k,$$

 $|\xi| < R(g) - |x|$. Thus, if $h(\xi) = g(x - \xi)$, then $h \in E\langle \xi \rangle$, i.e., the right-hand side of identity (18) is defined correctly. According to definition 4.1,

$$\frac{1}{2A\sqrt{\pi t}} \int_{-\infty}^{+\infty} \exp\left\{-\frac{\xi^2}{4A^2t}\right\} g(x-\xi)d\xi = \sum_{n=0}^{\infty} \frac{(2n)!}{n!} A^{2n} \left(\sum_{m=2n}^{\infty} C_m^{2n} b_m x^{m-2n}\right) t^n$$
$$= \sum_{n=0}^{\infty} \frac{(2n)!}{n!} A^{2n} \left(\sum_{m=0}^{\infty} C_{m+2n}^{2n} b_{m+2n} x^m\right) t^n = \sum_{n,m=0}^{\infty} \frac{(m+2n)!}{m!n!} A^{2n} b_{m+2n} t^n x^m = u(t,x),$$

and this series converges if $|t| < T_0$, $|x| < R_0$ (see Theorem 3.8). \Box

Remark 4.5. Equalities (17) and (18) show that a solution u(t, x) of the Cauchy problem (12) can be considered as a "convolution" of the initial condition g(x) with the "distribution" H_A .

5. CAUCHY PROBLEM FOR AN INHOMOGENEOUS EQUATION

Let f(t, x) be a vector-valued function that is analytic in a neighborhood of zero and

$$f(t,x) = \sum_{n,m=0}^{\infty} f_{nm} t^n x^m, \quad |t| < T_0, \quad |x| < R_0.$$

Consider the following Cauchy problem:

$$\begin{cases} \frac{\partial u}{\partial t} = A^2 \frac{\partial^2 u}{\partial^2 x} + f(t, x),\\ u(0, x) = 0. \end{cases}$$
(19)

By a solution of this problem we mean a vector-valued function of real variables t and x that is analytic in a neighborhood of zero, satisfies the equation in this neighborhood, and satisfies the initial condition.

Theorem 5.1. Assume that the operator A is quasinilpotent and that the Fredholm resolvent $(1 - zA^2)^{-1}$ of A^2 is an entire function of exponential type. Then the Cauchy problem (19) has a unique analytic solution, which is defined in a rectangle $|t| < T_1$, $|x| < R_1$, where $T_1 = \min\{T_0, \alpha(1 - \beta)^2 \gamma^2 R_{A^2}(\psi) R_0^2\}$, $R_1 = \beta \gamma R_0$, and α , β , γ are arbitrary constants from (0,1). (Recall that $R_{A^2}(\psi)$ is the radius of convergence of the series $\psi(zA^2) = \sum_{n=0}^{\infty} \frac{(2n)!}{n!} A^{2n} z^n$, see Proposition 2.9).

Proof. Let us find the solution of the Cauchy problem (19) in the following form:

$$u(t,x) = \sum_{k=0}^{\infty} A^{2k} u_k(t,x).$$
(20)

It is easy to check that this series formally satisfies the equation

$$\frac{\partial u}{\partial t} = A^2 \frac{\partial^2 u}{\partial x^2} + f(t, x)$$

if

$$\frac{\partial u_0}{\partial t} = f(t, x)$$
 and $\frac{\partial u_{k+1}}{\partial t} = \frac{\partial^2 u_k}{\partial x^2}, \quad k \ge 1.$

Taking into account the zero initial condition, we obtain the equalities

$$u_0(t,x) = \int_0^t f(\tau_0, x) d\tau_0$$

 and

$$u_{k+1}(t,x) = \int_{0}^{t} \frac{\partial^2 u_k}{\partial x^2}(\tau_{k+1},x)d\tau_{k+1}, \quad k \ge 1.$$

Hence,

$$u_k(t,x) = \int_0^t d\tau_k \int_0^{\tau_k} d\tau_{k-1} \cdots \int_0^{\tau_1} \frac{\partial^{2k} f}{\partial x^{2k}}(\tau_0,x) d\tau_0, \quad k \ge 0$$

To prove that the formal sum (20) is an analytic solution, we consider the functions f and u_k , k = 0, 1, ..., as holomorphic functions of two complex variables z and w in the polydisk $|z| < T_0$, $|w| < R_0$. Thus,

$$f(z,w) = \sum_{n,m=0}^{\infty} f_{nm} z^n w^m, \quad u_0(z,w) = \sum_{n,m=0}^{\infty} \frac{f_{nm}}{n+1} z^{n+1} w^m$$

 and

$$u_k(z,w) = \sum_{n,m=0}^{\infty} \frac{(m+2k)!n!}{m!(n+k+1)!} f_{nm} z^{n+k+1} w^m,$$

 $k = 0, 1, ..., |z| < T_0, |w| < R_0.$ Now take $\alpha, \beta, \gamma, \in (0, 1), r = \gamma R_0$, and $s < \min\{T_0, \alpha(1 - \beta)^2 \gamma^2 R_{A^2}(\psi) R_0^2\}$. There exists a constant M_1 such that $||f_{nm}|| \le \frac{M_1}{s^n r^m}, n, m = 0, 1, ...$ Hence, if $|z| < s_1 < s$ and $|w| < r_1 = \beta r$, then

$$\begin{aligned} \|u_k(z,w)\| &\leq M_1 \frac{|z|^{k+1}}{r^{2k}} \sum_{n,m=0}^{\infty} \frac{(m+2k)!n!}{m!(n+k+1)!} \left(\frac{|z|}{s}\right)^n \left(\frac{|w|}{r}\right)^m \\ &= M_1(2k)! \frac{|z|^{k+1}}{r^{2k}} \sum_{m=0}^{\infty} \frac{(m+2k)!}{m!(2k)!} \left(\frac{|w|}{r}\right)^m \sum_{n=0}^{\infty} \frac{n!}{(n+k+1)!} \left(\frac{|z|}{s}\right)^n \\ &= M_1(2k)! \frac{|z|^{k+1}}{r^{2k}} \frac{1}{(1-\frac{|w|}{r})^{2k+1}} \sum_{n=0}^{\infty} \frac{n!}{(n+k+1)!} \left(\frac{|z|}{s}\right)^n \\ &\leq M_1(2k)! \frac{s^{k+1}}{r^{2k}} \frac{1}{(1-\frac{|w|}{r})^{2k+1}} \frac{1}{(1-\frac{|z|}{s})(k+1)!} = \frac{M_1(2k)!s^{k+1}}{(1-\frac{s_1}{s})(k+1)!(1-\frac{r_1}{r})^{2k+1}r^{2k}} \end{aligned}$$

 since

$$\sum_{n=0}^{\infty} \frac{n!}{(n+k+1)!} t^n \bigg| = \bigg| \int_0^t d\tau_k \int_0^{\tau_k} d\tau_{k-1} \dots \int_0^{\tau_1} \frac{d\tau_0}{1-\tau_0} \bigg| \le \frac{1}{(1-|t|)(k+1)!}$$

Now set $l = \alpha R_{A^2}(\psi)$. Then the series $\sum_{k=0}^{\infty} \frac{(2k)!}{k!} \|A^{2k}\| \|k^k$ converges (see Proposition 2.9). Therefore, there exists a constant $M_2 > 0$ such that $\|A^{2k}\| \le M_2 \frac{k!}{(2k)! l^k}$, $k = 0, 1, \dots$ Hence,

$$\|A^{2k}u_k(t,x)\| \le \|A^{2k}\| \|u_k(t,x)\| \le \frac{M_1M_2s^{k+1}}{(1-\frac{s_1}{s})(k+1)(1-\frac{r_1}{r})^{2k+1}r^{2k}l^k}$$

for all $|z| \leq s_1$, $|w| \leq r_1$, and

$$\frac{s}{l(1-\frac{r_1}{r})^2} = \frac{s}{\alpha(1-\beta)^2 \gamma^2 R_{A^2}(\psi) R_0^2} < 1.$$

Thus, the series $\sum_{\substack{k=0\\\infty}}^{\infty} A^{2k} u_k(z, w)$ converges uniformly at $|z| \leq s_1$, $|w| \leq r_1$ for all $s_1 < s$ and $r_1 < \beta R_0$, and the

function $u(z, w) = \sum_{k=0}^{\infty} A^{2k} u_k(z, w)$ is holomorphic in the polydisk $|z| < T_1, |w| < R_1$, where

$$T_1 = \min\{T_0, \alpha(1-\beta)^2 \gamma^2 R_{A^2}(\psi) R_0^2\}$$
 and $R_1 = \beta \gamma R_0$.

Therefore, the function u(t, x), which is the sum of the series (20), is analytic in the rectangle $|t| < T_1$, $|x| < R_1$, and is a solution of the Cauchy problem (19). The uniqueness of the solution follows from Lemma 3.1. The theorem is proved. \Box

Remark 5.2. Assume that the function f from the Cauchy problem (19) does not depend on t, i.e., f(t, x) = g(x), where g is a vector-valued function that is analytic in a neighborhood of zero. If u(t, x) is a vector-valued function that is analytic in a neighborhood of zero and $v = \frac{\partial u}{\partial t}$, then it is easy to check that u(t, x) is a solution of the Cauchy problem (19) if and only if v(t, x) is a solution of the Cauchy problem (12):

$$\begin{cases} \frac{\partial v}{\partial t} = A^2 \frac{\partial^2 v}{\partial x^2}, \\ v(0, x) = g(x) \end{cases}$$

Therefore, the implication $(3) \Rightarrow (1)$ in Theorem 3.8 can be deduced from Theorem 5.1. Moreover, the method of solution finding for the inhomogeneous equation in the form of a series with respect to degrees of a "small parameter" can be used to solve the Cauchy problem (12):

$$\begin{cases} \frac{\partial u}{\partial t} = A^2 \frac{\partial^2 u}{\partial x^2}, \\ u(0, x) = g(x) \end{cases}$$

In this case, it is natural to find a solution in the form

$$u(t,x) = g(x) + \sum_{n=1}^{\infty} \frac{t^n}{n!} A^{2n} g_n(x).$$
(21)

Here $g_{n+1} = g''_n(x)$, i.e., $g_n(x) = g^{(2n)}(x)$, $n \ge 1$. If the condition of Proposition 2.9 is fulfilled, then the convergence of series (21) can be proved in the same way as in Theorem 5.1.

Example 5.3. Assume that the operator A satisfies the condition of Theorem 5.1 and that $b \in E$. Consider the Cauchy problem:

$$\begin{cases} \frac{\partial u}{\partial t} = A^2 \frac{\partial^2 u}{\partial x^2} + \frac{b}{1-x},\\ u(0,x) = 0. \end{cases}$$

If $v = \frac{\partial u}{\partial t}$, then v is a solution of the Cauchy problem (13):

$$\begin{cases} \frac{\partial v}{\partial t} = A^2 \frac{\partial^2 u}{\partial x^2}, \\ v(0, x) = \frac{b}{1 - x} \end{cases}$$

Therefore, $v(t, x) = \psi\left(\frac{tA^2}{(1-x)^2}\right) \frac{b}{1-x}$ (see Proposition 3.2). Hence,

$$u(t,x) = \int_0^t \psi\bigg(\frac{\tau}{(1-x)^2} A^2\bigg) \frac{b}{1-x} d\tau = \sum_{k=0}^\infty \frac{(2k)!}{(k+1)!} A^{2k} b \frac{t^{k+1}}{(1-x)^{2k+1}},$$

|t| < T, |x| < R, where $R = \alpha$ and $T = \frac{1}{4}(1-\alpha)^2$, $\alpha \in (0,1)$ (see Proposition 3.2).

Translated by A. Vershynina and S. Gefter.

REFERENCES

- 1. E. Hille, Ordinary Differential Equations in the Complex Domain, A Wiley-Interscience publication, New York-London (1976).
- 2. J. Hadamar, Le Problème de Cauchy et les Équations aux Dérivées Partielles Linéaires Hyperboliques, Hermann, Paris (1932).
- 3. R. Courant, Partial Differential Equations, New York-London (1962).
- 4. I. Petrovskii, Partial Differential Equations, Iliffe Books Ltd., London (1967).
- S. V. Kowalewsky, "Zur Theorie der partiellen Differentialgleichungen," J. reine angew. Math., 80, 1–32 (1875).
- 6. C. Riquie, Les Systèmes d'Èquations aux Dérivées Partielles, Gauthier-Villars, Paris (1910).
- P. Rosebloom, "The majorant method. Partial differential equations," in: Proc. of the Fourth Symposium in Pure Mathemetics, Amer. Math. Soc. (1961), pp. 51–72.
- V. Palamodov, "Differential operators on the class of convergent power series and the Weierstrass auxiliary lemma," *Funkts. Analiz Prilozh.*, 2, 235–244 (1968).
- F. Treves, "An abstract nonlinear Cauchy-Kovalevskaya theorem," Trans. Amer. Math. Soc., 150, 77–92 (1970).
- 10. S. Mizohata, "On Kowalewskian systems," Russ. Math. Surv. 29, 223-235 (1974).
- L. Ovsyannikov, "Abstract form of the Cauchy-Kovalevskaya theorem and its applications," *Partial Diff.* Eqs. Novosibirsk, 88–94 (1980).
- 12. S.Öuchi, "Characteristic Cauchy problems and solutions of formal power series," Ann. Inst. Fourier, 33, 131–176 (1983).
- D. Lutz, M. Miyake, and R. Schäfke, "On the Borel summability of divergent solutions of the heat equation," Nagoya Math. J., 154, 1–29 (1999).
- W. Balser, "Divergent solutions of the heat equation: on an article of Lutz, Miyake, and Schäfke," *Pacific J. Math.*, 188, 53–63 (1999).
- 15. M. Gorbachuk, "On the well-posedness of the Cauchy problem for operator-differential equations in classes of analytic vector functions," *Dokl. Ros. Akad. Nauk*, **374**, 7–9 (2000).
- M. Gorbachuk, "An operator approach to the Cauchy–Kovalevskaya theorem," J. Math. Sci., 5, 1527–1532 (2000).
- 17. S. Chulkov, "On the convergence of formal solutions of systems of partial differential equations," *Funkts.* Analiz Prilozh., **39**, 215–224 (2005).
- 18. A. Khovanskii and S. Chulkov, "The Hilbert polynomial for systems of linear partial differential equations with analytic coefficients," *Izv. Math.*, **70**, 153–169 (2006).
- E. Hille and R. Phillips, Functional Analysis and Semi-Groups, Amer. Math. Soc. Coll. Publ., 31, Providence (1957).
- 20. H. Grauert and R. Remmert, Analytische Stellenalgebren, Springer-Verlag (1971).
- Ju. Dalec'kii and M. Krein, Stability of Differential Equations in a Banach Space, Amer. Math. Soc., Providence (1974).
- 22. S. Gefter and V. Mokrenyuk, "The power series $\sum_{n=0}^{\infty} n! z^n$ and holomorphic solutions of some differential equations in a Banach space," J. Math. Phys., Anal., Geom., 1, 53–70 (2005).