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ON HOLOMORPHIC SOLUTIONS OF THE HEAT EQUATION WITH
A VOLTERRA OPERATOR COEFFICIENT

SERGEY GEFTER AND ANNA VERSHYNINA

This paper is dedicated to 100 anniversary of Mark Krein.

Abstract. Let A be a bounded operator on a Hilbert space and g a vector-valued
function, which is holomorphic in a neighborhood of zero. The question about exis-

tence of holomorphic solutions of the Cauchy problem

 ∂u

∂t
= A

∂2u

∂x2

u(0, x) = g(x)
is consid-

ered in the paper.

In 1875 Sofya Kovalevskaya showed that the heat equation

∂u

∂t
=
∂2u

∂x2

with a holomorphic initial condition can have no holomorphic solution (see [9], [11]). The
researches, started by Kovalevskaya, further have been continued in numerous works (see,
for example, [6], [7], [10], [12]–[14]). In the present paper we shall consider the following
operator analog of the Cauchy problem for the heat equation:

(1)


∂u

∂t
= A

∂2u

∂x2
,

u(0, x) = g(x),

where A is a bounded linear operator in a complex Hilbert space and g(x) a vector-
valued function, which is holomorphic in a neighborhood of zero. As a solution of the
problem (1) we understand a holomorphic solution, i.e., a vector-valued function of the
two complex variables t and x, which is holomorphic in a neighborhood of zero, satisfies
the equation in this neighborhood and the initial condition holds in some neighborhood of
the point x0 = 0. The main result of the paper is a proof of local existence and uniqueness
theorem on holomorphic solution of the Cauchy problem (1) in the assumption that A is
a Volterra operator and the imaginary part of A is of trace class (see Theorem 2). Let us
note that operators of this class were been studied in detail in the Odessa school of the
operator theory (see [2], [4], [5]). The proof of Theorem 2 is based on the consideration
of the formal solution of the Cauchy problem (1)

u(t, x) = g(x) +
∞∑
n=1

tn

n!
Ang(2n)(x)

as a series on degrees of the “small parameter” A.
Let H be a complex Hilbert space and A : H → H a bounded linear operator.
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Lemma 1. Let g(x) =
∞∑
m=0

bmx
m be a formal power series with coefficients in E. Then

the formal power series

u(t, x) =
∞∑

n,m=0

(m+ 2n)!
m!n!

A2nbm+2nt
nxm

is a unique formal solution of the problem (1). (We set (Av)(t, x) =
∞∑

n,m=0
Avn,mt

nxm,

if v(t, x) =
∞∑

n,m=0
vn,mt

nxm is a formal power series with coefficients in H.)

Proof. Assume that u(t, x) =
∞∑

n,m=0

cnmt
nxm, cnm ∈ H, is a formal solution of the

Cauchy problem (1). Then after substitution into the equation we obtain
∞∑

n,m=0

(n+ 1)cn+1mt
nxm =

∞∑
n,m=0

(m+ 2)(m+ 1)Acnm+2t
nxm,

∞∑
m=0

c0mx
m =

∞∑
m=0

bmx
m.

Hence,
(n+ 1)cn+1m = (m+ 2)(m+ 1)Acnm+2

and
c0m = bm, n,m ≥ 0,

i.e.,

cn,m =
(m+ 2n)!
m!n!

Anbm+2n, n,m ≥ 0.

Thus the unique formal solution is u(t, x) =
∞∑

n,m=0

(m+ 2n)!
m!n!

Anbm+2nt
nxm. �

Theorem 1. Let the operator A be normal (in particular, self-adjoint). If the Cauchy
problem (1) has a holomorphic solution for any vector-valued function g(x), which is
holomorphic in a neighborhood of zero, then A = 0.

Proof. Since the problem (1) has a holomorphic solution for any vector-valued function
g(x), the Cauchy problem 

∂u

∂t
= A

∂2u

∂x2
,

u(0, x) =
b

1− x
,

has a holomorphic solution for all vector b ∈ H. Let u(t, x) be a solution of this problem.

It follows from Lemma 1 that u(t, x) =
∞∑

n,m=0

(m+2n)!
m!n! Anbtnxm. Since

∞∑
m=0

(m+2n)!
m!(2n)! x

m =

1
(1−x)2n+1 , we obtain that u(t, x) =

∞∑
n=0

(2n)!
n!

Anbtn

(1−x)2n+1 . Therefore lim
n→∞

n

√
(2n)!
n! ‖Anb‖ <

+∞. Since n

√
(2n)!
n! → ∞, we obtain that lim

n→∞
n
√
‖Anb‖ = 0. Hence, lim

n→∞
n
√
‖An‖ = 0

(see, for example, [1], Problem 6.1.10). Since A is normal, A = 0. �

Theorem 2. Let the operator A be quasi-nilpotent and its imaginary part AI := 1
2i (A−

A∗) be of trace class. Then the Cauchy problem (1) has a unique holomorphic solution
in a neighborhood of zero.
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Proof. We shall seek a solution of the Cauchy problem (1) in the form

(2) u(t, x) =
∞∑
n=0

Anun(t, x).

It is easy to check that this series formally satisfies the equation ∂u
∂t = A∂2u

∂x2 if

∂u0

∂t
= 0 and

∂un+1

∂t
=
∂2un
∂x2

, n ≥ 0.

Taking into account the initial condition, we obtain

u0(t, x) = g(x) and un+1(t, x) =

t∫
0

∂2un
∂x2

(τ, x) dτ, n ≥ 0.

Hence,

un(t, x) = g(2n)(x)
tn

n!
, n ≥ 0.

Therefore, u(t, x) =
∑∞
n=0

1
n!A

ng(2n)(x)tn. Now we show that there exist T0, R0 > 0 such

that this series converges uniformly in |t| < T0, |x| < R0. Let g(x) =
∞∑
m=0

bmx
m, |x| <

R(g). Let c1, c2, c3, c4 ∈ (0, 1) and c3 < c21c2(1 − c4)2 (for example c1 = 3/4, c2 =
9/10, c3 = 1/8, c4 = 1/2). If 0 < r1 = c1R(g), then there exists a constant M1 > 0 such
that ‖bm‖ ≤ M1

rm1
, m = 0, 1, . . . . Hence, for |x| < r1 and n = 0, 1, . . . , we obtain

‖g(2n)(x)‖ = ‖
∞∑
m=0

(m+ 2n)!
m!

bm+2nx
m‖ ≤

∞∑
m=0

(m+ 2n)!
m!

‖bm+2n‖|x|m

≤ M1

r2n
1

∞∑
m=0

(m+ 2n)!
m!

(
|x|
r1

)m =
M1(2n)!

r2n
1 (1− |x|r1 )2n+1

.

Therefore,
∞∑
n=0

‖ 1
n!
Ang(2n)(x)tn‖ ≤M1

∞∑
n=0

(2n)!
n!
‖An‖

( |t|
r2
1
)n

(1− |x|r1 )2n+1
.

Let us consider the Fredholm resolvent FA(z) := (1 − zA)−1 of A. Since A is quasi-
nilpotent, FA(z) is an entire function. Moreover, A is quasi-nilpotent and AI is compact.
Hence A is compact (see [5], Ch. 1, Th. 5.4). So, A is a Volterra operator. Now from
([5], Ch. 4, Rem. 8.3 and Ch. 5, Th. 5.2), we obtain that FA(z) is of exponential type,
i.e., lim

z→∞
ln ‖FA(z)‖
|z| < +∞. Hence, lim

n→∞
n
√
‖An‖ < +∞ (see [3], Ch. 1, Problem 22). It

follows from the Stirling formula that 1
RA

:= lim
n→∞

n

√
(2n)!
n! ‖An‖ < +∞. Hence, the series

∞∑
n=0

(2n)!
n! ‖A

n‖rn2 converges, where r2 = c2RA. Therefore, there exists a constant M2 > 0

such that (2n)!
n! ‖A

n‖ ≤ M2
rn2
, n = 0, 1, . . . Hence, for |x| < r1 and n = 0, 1, . . ., we obtain

M1
(2n)!
n!
‖An‖

( |t|
r2
1
)n

(1− |x|r1 )2n+1
≤ M1M2

r2n
1 rn2

|t|n

(1− |x|r1 )2n+1
.

Let now T0 = c3RAR(g)2, R0 = c1c4R(g). If |t| < T0 and |x| < R0, then

|t|
r2
1r2(1− |x|r1 )2

<
c3RAR(g)2

c2RAc21R(g)2(1− R0
r1

)2
=

c3
c21c2(1− c4)2

< 1,
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i.e., the series
∑∞
n=0

1
n!A

ng(2n)(x)tn converges uniformly in the dicylinder |t| < T0, |x| <
R0. Hence, u(t, x) =

∑∞
n=0

1
n!A

ng(2n)(x)tn is holomorphic in this dicylinder and u(t, x)
is a solution of the problem (1). The uniqueness follows from Lemma 1. �
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