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My research interests are in the fields of Number Theory, Dynamical Systems and Ergodic
Theory. In what follows, I summarize my current research work in these areas, the motivation
towards undertaking the projects I have been involved in so far and also some of the interesting
problems that I look forward to working on next.

Introduction

I have been part of the Dynamical Systems research group during my tenure as a PhD student
at the University of Houston.

The overall theme of my research till now has been to study problems related to Diophantine
approximation in p-adic solenoids and their interactions with dynamical systems. In order to
understand problems in dynamics that are sensitive to arithmetic properties of return times to
regions, it is desirable to generalize classical results about rotations on R/Z to the setting of
rotations on adelic tori. One of the limitations in working with the s-torus, T = (R/Z)%, s > 2
s that we only have countably many isomorphism classes of compact groups. This limitation no
longer exists when we work with adeles.

For the first of my two completed projects, we worked on giving an explicit construction of
Bounded Remainder Sets of all possible volumes, for rotations on higher dimensional adelic
tori. The second project pertains to proving a natural generalization of the Three Gap Theorem
for rotations on adelic tori.

Before we start discussing the projects, I give here a brief introduction to what led to my
interest in these areas. I attribute my introduction to this field of study to a course on Topological
Dynamics that I audited during the last year of my Masters degree program. From the first
semester of my PhD program, I started reading multiple research papers under the guidance of
my thesis advisor, |[Alan Haynes. These papers exposed me to even more ideas from Dynamical
Systems and Ergodic Theory.

One of the first papers that I read is authored by Haynes in collaboration with Henna
Koivusalo and James Walton (see [I1]). Take a linear R%action on a higher dimensional torus
and consider the return times of this action to some particular region. The collection of points in
R? that arise from this dynamical construction give us point sets, which we call cut and project
sets. These sets are widely accepted as mathematical models for physical materials known as
quasicrystals. The goal of their paper is to explore the possible existence of cut and project sets
that are better than "perfectly ordered". The results of the paper also lead to an understanding
of how the study of the existence of these sets is closely related to the Littlewood Conjecture, a
famous open problem in Diophantine Approximation. This paper introduced me to a technique in
tiling theory known as the "cut and project set method". It led me to appreciate the connections
that exist between Number Theory, Dynamical Systems and Ergodic Theory.

Here I give an introduction to p-adic analysis and notation. For more detailed background
information, I refer the reader to [I8, Chapter 1] and [23 Chapter 3|. Additionally, for detailed
definitions and basic properties of the adeles or adelic tori, please refer to [4, Section 2| and [3]
Section 2].


https://www.math.uh.edu/~atdas/
mailto:atdas@math.uh.edu
https://www.math.uh.edu/dynamics/DynSystGroup/
https://www.math.uh.edu/~haynes/index.html
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If a # 0 € Q, then the is defined as lal, = p~™, where a = p™ (g) , byce
Z,p 1 b,c, and by convention, [0|, = 0. For any prime number p, we write Q,, for the field of
p-adic numbers, which is the completion of Q with respect to | - |,. Every element € Q, can be
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where z; € {0,1,...,p — 1} for all integers ¢ > N. The ring of p-adic integers Z, is the set of all

expressed as a sum of the form

z € Qp with|z|, < 1. We use | - | to denote the usual Archimedean absolute value on R. Let A
denote the topological ring of rational adeles over Q consisting of all points of the form

a = (oo, Qp,, Oy, . ..) ER X HQp,
3

satisfying the condition that o, € Z, for all but finitely many primes p (the product above
is over all prime numbers). Addition and multiplication of elements are defined pointwise and
the topology on A is the restricted product topology with respect to the sets Z, C Q,. Let
P = {p1,p2, ...} be anon-empty subset of prime numbers. Then, Ap denotes the topological ring
obtained as a result of the projection of A onto the places indexed by {co}UP. It is provided with
the final topology with respect to this projection. The additive group I'p = Z[1/p1, 1/p2, .. .] can
be diagonally embedded into Ap by the injective homomorphism v — ~v = (v,7,7,...), and we
identify I'p with its image under this map. I'p is a discrete subgroup of Ap and we subsequently
define the quotient group Xp = Ap /T'p. This is a connected, compact, metrizable, abelian group.
From a topological visualization point of view, the 2-adic solenoid (simplest case of an adelic torus
where P = {2}), Xo = (R x Q32)/Z[1/2], is homeomorphic to the Smale-Williams solenoid.

Bounded Remainder Sets

Let us start our discussion with an interesting collection of sets in Diophantine Approximation
known as Bounded Remainder Sets (herein referred to as BRS’s). Suppose G is a compact, abelian
and metrizable group, and let 8 € G. Let T : G — G by Tg(x) = = + [ be uniquely ergodic. A
measurable set A C G is a BRS for Tj if

N

sup sup ZXA(Tg(x)) — N|A|| < 0.

rz€G NEeN n—1

Over the last 100 years, BRS’s have been extensively studied in this setting of compact groups,
specifically the 1-torus, T = R/Z (see [16],[17] and [21]) and the s-torus, T = (R/Z)*, s > 2 (see
[6], [19], [24], [26] and [32] among others). In February 2014 (see [10]), Haynes and Koivusalo
gave a way to construct infinite families of non-trivial parallelotopes which are BRS’s, in any
dimension. In April 2014, (See [8]), Sigrid Grepstad and Nir Lev used dynamical methods and
harmonic analysis to construct parallelotopes, in any dimension and of any possible allowable
volume, which are BRS’s. This effectively completed the classification of volumes of BRS’s for
totally irrational toral rotations in any dimension.

In 2016, Haynes and Koivusalo in collaboration with Michael Kelly (see [9]) were able to
use the cut and project set method to demonstrate how a simple geometric idea can be used to
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construct parallelotopes of all possible volumes which are BRS’s for any irrational rotation in any
dimension, hence giving a very elegant proof of the construction of Grepstad and Lev. Following
this, in 2018, Haynes and Koivusalo along with Joanna Furno extended the above mentioned
results and classification of BRS’s from the countable family T®, s € N, to an uncountable
collection of connected, compact subgroups of the adelic torus A/Q. Their construction involves
the use of the cut and project method (see [7]). Following is the main theorem of their paper.

Theorem (Furno, Haynes, Koivusalo, 2018). Suppose o = (oo, 2, 3,...) € A, oo ¢ Q and
Za = A/Q. Then the collection of all possible volumes of BRS’s for Ty is

—’yaoo+Z{’yozp}p+n20 cyeQneZy,
P

where {-},: Q, = R is the p-adic fractional part.

My work with Haynes and Furno is motivated by the desire to complete this direction of
inquiry by giving a construction of BRS’s of all possible volumes, for all ergodic rotations on
higher dimensional adelic tori, A?/Q?, d > 2. In our paper (|3]), we do this by giving a simple and
explicit construction of polytopal BRS’s using the cut and project set method. Our construction
involves ideas from dynamical systems and harmonic analysis on the adeles, as well as a geometric
argument that reduces the existence argument to the case of an irrational rotation on the torus
R?/Q%. The notation required for the proof of the main theorem in our paper are complex and I
would like to briefly mention them here before stating it.

For d € N, the interest is in BRS’s for rotations on X4 = Adp /F% (taken with the product
topology). Since it is convenient to examine all the coordinates at each place at once, we consider
A% as a subset of R? x [Ler Qg. Thus, we consider elements of the form & = (oo, dp,, Ap, - - ),
where

Ao = (aoo,la aoo,?a ey aoo,d)7 and

&p = (ozp71, Qp 2,y Olp,d) for p e P.

Rotation by @ on X% is the map Ty : X% — X4 defined by T5(¥) = ¥ + d. Our main theorem
provides a construction of adelic polytope BRS’s for Ty, of all possible volumes, in the generic
case when this map is ergodic.

Theorem (Das, Furno, Haynes, 2020). Suppose P and X% are defined as above. Suppose further
that & € X% and that 1, 0001, ..., 0004 are linearly independent over Q. Then the set of all
volumes of BRS’s for T is

d

Do vaces =D {vewi}, | +n=0:yelpneZy,
j=1 peEP

where {-}p : Qp — R is the p-adic fractional part. Furthermore, for every volume in this set,
there is a BRS for Ty of that volume which is the projection to X% of the Cartesian product of a
parallelotope in R? with balls centered at 0 in the p-adic directions (all but finitely many of which
have radius 1).


https://arxiv.org/abs/2002.04444
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One important idea in our proof is that the return times of the point 0 € X%H, under the
action of Ty, to a region A C X%Jrl, are in bijective correspondence with the points of a cut and
project set, the projection to X% of a strip of a lattice in X%H. By choosing A in a way that is
compatible with the lattice, we can use the group structure to count the return times to A and
ensure that we have a BRS. Of course, what follows is the involvement of technical calculations
to verify that all allowable volumes are obtained by this construction.

Gaps problems: The three gap theorem

The next topic of study I concentrated on was the connection between gaps problems and dy-
namics.

Consider the unit circle R/Z, which we can also think of as the unit interval [0, 1] with 0 and 1
identified. Now, for fixed « € R and N € N, let & = {ka}, where {-} denotes the fractional part
of ka, for all 1 < k < N. Then, the elements of the sequence {fk}é\/:p partition the unit circle
into N intervals. The lengths of these intervals are exactly the gaps between the elements of the
sequence {gk}{le We denote the kth gap (the distance between & and its next neighbour to the
right) by 05, v and let gn () be the number of distinct elements in the set {0y n: 1 <k < N}. The
Steinhaus conjecture, which is also known as the three gap theorem or the three distance theorem,
states that for any real number o and natural number N, we have gn(a) < 3.

This was initially proved independently in the late 1950s by Sos [33, B34], Suranyi [30], and
Swierczkowski [31]. It has since been reproved numerous times and generalized in many ways
(see the introductions and bibliographies of [12, [13]). In 2017, Marklof and Strombergsson (|20])
presented a different approach to prove the classical three gap theorem using the space of two-
dimensional Euclidean lattices. The utility of their approach lies in its flexibility for generalization
to higher dimensional problems where other techniques do not work well (see [12 13} [15]).

In my next paper coauthored with Haynes (see [4]), we use an adaptation of the lattice
based approach to gaps problems in Diophantine approximation to the adeles, to prove a natural
generalization of the three gap theorem for rotations on adelic tori. Before stating our main
result, I would like to give a short introduction to the setup. Note that P, Xp, o, and A, are
defined as in the Introduction. We define gaps as nearest neighbor distances, but first we specify
a metric on Xp. A natural choice of metric on Ap is given by

max{]aoo — Booloos Maxpep oy — Bp‘p} if |P| < oo,
oo — B =

max{]aoo — Boo|oo, Max,ep %} if |P| = oo.

This metric induces the usual restricted product topology on Ap, and we use it to define the
metric

e = B = min{la = 8 —~|: 7y € 'p}

on Xp, which induces the quotient topology (see [14], 35]).
Given a € Ap and N € N, let

Sy(a)={& =na+Tp:1<n< N} C Xp,
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and for each 1 <n < N let §, y = 0,,n(x) denote the distance from &, to its nearest neighbor
in Sy(a). That is,
Sy =min{[|€m — &l >0: 1 <m < N}.

As mentioned above, our interest lies in the number of distinct nearest neighbor distances, which
we write as

gn(a) = {onn(a): 1 <n < N}|.

The main result of this paper is the following theorem.

Theorem (Das, Haynes, 2021). Let P be any non-empty set of prime numbers. For any o € Xp
and N € N, we have that gn(a) < 3. Furthermore, there ezxist o € Xp and N € N for which

gn(a) = 3.

Initially, T worked by myself and completed the proof of the upper bound for gy () in the
statement of the theorem, which makes up the first part of the proof of the main theorem (|4,
Section 4|) in our paper. We then worked together to complete the proof, for which we needed
to show that the bound of 3 in our theorem is best possible, i.e., for any choice of P, there are
examples of @ € Xp and N € N for which gy(a) = 3. One can definitely use a computer to do
this for specific choices of P, but some amount of ingenuity is required to deal with arbitrary P
and construct examples for that case. The last section (|4, Section 5|) of our paper comprises of
these examples.

Future work

It is important to note that in the classical three gap theorem, gaps are basically the “nearest
neighbor distances to the right (or in a particular fixed direction)” and hence the number of nearest
neighbor distances will in general be a less than or equal to the number of gaps. Hence, in their
paper ([13]), Haynes and Marklof also consider the problem of choosing a direction (for instance,
a cone of angles) when looking for nearest neighbors. This gives a more flexible generalization
of the setup of the classical result. As a next step to our proof of the three gap theorem for
A/Q, T am interested in working on a similar “directional” version of the gaps problem in higher
dimensions for the adeles. One of the first things to understand towards this will be the notation
involved and what the concept of direction looks like in this setting.

In their paper, Sigrid and Grepstad ([§]) also characterize the Riemann measurable BRSs in
terms of “equidecomposability” and by constructing invariants with respect to this equidecom-
position, they derive explicit conditions for a polytope to be a BRS. On similar lines, I am also
interested in extending the work done in [3] to give conditions under which adelic polytopes that
are measurable with respect to the Haar measure on X%, are BRSs with respected to rotations
on higher dimensional adelic tori.

Another topic related to Diophantine Approximation that I have closely studied is Ostrowski
Expansion of integers. This expansion expresses an integer in terms of the basic parameters
associated with its continued fraction expansion. To recall (see [I]), for any irrational number g,
consider the simple continued fraction expansion, 8 = [ag; a1, as,...]. The integers aj are known
as the partial quotients of 8 and satisfy a > 1, for all £ > 1. For all £ > 0, the reduced rationals

Pk _ [ap; a1, ag, . ..,ak], obtained by truncating the infinite continued fraction expansion, are

called the principal convergents of 3. We have the following lemma.


https://arxiv.org/abs/2107.05147
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Lemma. Let f € R/Q and let a, and qi be defined as above. Then, for every N € N there exsits
a unique integer K > 0 such that g < n < qry1, and a unique sequence {cp41}5e, of integers

such that
o
n=> Cri1dk;
k=0
0<ci<ar and 0<cgr1 <apy1 forall k2>1,
c, =0 whenever cpy1 = a1 with k>1,
and

ckr1 =0 forall k> K.

The representation given by this lemma is known as the Ostrowski expansion of the integers.
Now, for any 8 > 1, the Base-f expansion of any n € N and the sum of the digits in the Base-8
expansion are respectively given by

n= Z eB~" and Sz(n) = Zei,
i>0 i>0
where for all 7, ¢; € {0,1,...,8—1}.

A lot of interesting work has been done related to Diophantine approximation, Ostrowski
expansions and the sum of digits function. For instance, see [2], [5], [25], [28], and [29], among
others. I will now explain a related open problem that was recently brought to my attention and I
have been interested in. Using a result proved by R. Salem in 1964 (see [22]) and one of the main
theorems of their own paper written in 1973 (see [27]), Senge and Strauss were able to ascertain
that the number of integers, the sum of whose digits in each of the bases 6 and ¢ lies below a

fixed bound, is finite if and only if log(0) is irrational, i.e.,
log(¢)
. .. log(0)
#{n € N: Sp(n) < c and S4(n) < c} < oo, for all ¢ >0, if and only if Tog (@) e R\ Q.

The problem that we are interested in is to prove an analogous result by replacing the Base-6
and Base-¢ expansions of n with the Ostrowski expansions of n with respect to any two irrational
numbers 6 and ¢. As a first step, it will be helpful to prove a particular case, i.e., to show that
the number of integers which have finitely many digits in the Ostrowski expansions with respect

3+v13
2

now, we have been able to prove a couple of important technical lemmas and ascertain that the
result does not hold true if § = 1+—2‘/5 and ¢ = 1+ /2.

The PhD program has been a platform that has helped me to extensively read quite a few
important concepts in the field of Dynamical Systems and Number Theory. In the future, I am

to irrational numbers 6 = # and ¢ = is bounded. In the work that has been done until

interested to work not only on the few problems that I have mentioned here, but also to learn
about and work on other related concepts with the goal of proving substantial results that will
contribute to the mathematical community.
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