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Why wavelets?

The scoop about wavelets:

Similar filtering capabilities as Fourier series/transform.

Adaptability to typical signals.

Good for compression and denoising.

Numerical implementation as fast as FFT.

Wavelet design based on digital filters.

More information about analog-digital conversion, filtering,
wavelet design and applications in MATH 4355, “Mathematics
of Signal Representations” (From Fourier to Wavelets in
1 Semester) in Spring 2009!
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Inner Product Spaces

The typical examples of vector spaces with an inner product are given by
sequences or by functions. A fundamental relationship between vectors in
inner product spaces is orthogonality.

Definition

Let `2(Z) be the vector space of all (bi-infinite) sequences (xn)n∈Z with∑∞
k=−∞ |xn|2 <∞. For x , y ∈ `2(Z), we define an inner product

〈x , y〉 =
∞∑

n=−∞
xnyn .

This means, we can measure the “length” of a square-summable sequence
x , the norm ‖x‖ =

√
〈x , x〉 and an “angle” θ between two non-zero

sequences x and y by

cos θ = |〈x , y〉|/‖x‖‖y‖ .

We call them orthogonal if 〈x , y〉 = 0.
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Trigonometric polynomials as inner product space

Example

An example for an inner product space of functions is given by all
trigonometric polynomials, convention: i =

√
−1,

V =

{
p : [0, 1]→ C, p(t) =

N∑
k=−N

cke2πikt ,N ∈ N, all ck ∈ C

}
,

equipped with the inner product

〈v ,w〉 =

∫ 1

0
v(t)w(t) dt .

B. G. Bodmann (UH Math) From Fourier to Wavelets in 60 Slides September 20, 2008 6 / 62



An orthogonal pair of (real-valued) polynomials
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Trigonometric polynomials – from analog to digital

Because of the orthogonality of complex exponentials, the inner product of
two trigonometric polynomials v and w is expressed in terms of their
coefficients (ck)k∈Z and (dk)k∈Z as

〈v ,w〉 =
∑
k∈Z

ckdk .

The space of sequences can be thought of as the space of digitized signals,
given by coefficients stored in a computer. The function space of trig
polynomials, on the other hand, can be thought of as a space of analog
signals. We have just converted the inner product from an integral to a
series, from analog to digital, without changing it!
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L2([a, b])

We can make a more general type of function space by linear combinations
of complex exponentials of the form e2πint/(b−a).

Definition

Let a, b ∈ R, a < b, then we define

L2([a, b]) =

{
f : [a, b]→ C, f (t) =

∞∑
k=−∞

cke2πikt/(b−a), c ∈ `2(Z)

}

and for two such square-integrable functions f and g , we write

〈f , g〉 =

∫ b

a
f (t)g(t)dt .

Again, the inner product of f and g can be rewritten as inner product of
their coefficients in `2(Z).
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Orthogonality and basis expansions

Definition

Let V be a vector space with an inner product. A set {e1, e2, . . . eN} is
called orthonormal if ‖ei‖ = 1 and 〈ei , ej〉 = 0 for all i 6= j .
We call {e1, e2, . . . eN} an orthonormal basis for its linear span.
Given an infinite orthonormal set {en}n∈Z, we say that it is an orthonormal
basis for all vectors obtained from summing the basis vectors with
square-summable coefficients.

Definition

Two subspaces V1, V2 are called orthogonal, abbreviated V1 ⊥ V2, if all
pairs (x , y) with x ∈ V1 and y ∈ V2 are orthogonal.
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We consider two examples of subspaces of L2([a, b]):

Example

Let V0 be the complex subspace of L2([−π, π]) given by

V0 = {f (x) = c1 cos x + c2 sin x for c1, c2 ∈ C} .

Then the set {e1, e2},

e1(x) =
1√
π

cos x and e2(x) =
1√
π

sin x ,

is an orthonormal basis for V0.
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Example

Another subspace of of L2([0, 1]) is the space of functions which are
(almost everywhere) constant on [0, 1/2) and [1/2, 1]. It has the
orthonormal basis {φ, ψ} with

φ(x) = 1 and ψ(x) =

{
1, 0 ≤ x < 1/2
−1, 1/2 ≤ x ≤ 1

0.2 0.4 0.6 0.8 1.0
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Such finite-dimensional subspaces of L2([a, b]) are often chosen to specify
approximations of signals.
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Once we have orthonormal bases, we can use them to expand vectors.

Theorem

Let V0 be a subspace of an inner product space V , and {e1, e2, . . . eN} an
orthonormal basis for V0. Then for all v ∈ V0,

v =
N∑

k=1

〈v , ek〉ek .

Question

What is the result

v̂ =
N∑

k=1

〈v , ek〉ek

if v 6∈ V0?

It turns out that v̂ is the best you can get with a linear combination from
{e1, e2, . . . eN}.
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Orthogonal projections

Theorem

Let V0 be an inner product space, V0 an N-dimensional subspace with an
orthonormal basis {e1, e2, . . . eN}. Then for v ∈ V ,

v̂ =
N∑

j=1

〈v , ek〉ek

satisfies
〈v − v̂ ,w0〉 = 0

for all w0 ∈ V0.

Since the difference vector v − v̂ is orthogonal to V0, we call v̂ the
orthogonal projection of v onto V0.
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A least squares property

Here is why the vector v̂ is the “best possible” choice in the subspace V0:

Theorem

Let V0 be a finite-dimensional subspace of an inner product space V .
Then for any v ∈ V , its orthogonal projection v̂ onto V0 has the
least-squares property

‖v − v̂‖2 = min
w∈V0

‖v − w‖2 .

Projection onto sub-
space of piecewise
constant functions in
L2([0, 1])
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Fourier series as expansion in an orthonormal basis

Exercise

Given V0 ⊂ L2([0, π]) which has the orthonormal basis {ek}Nk=1 of

functions ek(x) =
√

2
π sin(kx). Compute the projection of the constant

function f (x) = C , C ∈ R, onto V0.

This exercise amounts to computing the first N terms in the Fourier sine
expansion of f ! We can include cosines, choose the interval [−π, π] and
take N →∞ in order to get the Fourier series.

Theorem

The set {. . . , cos(2x)√
π

, cos(x)√
π

, 1√
2π

, sin(x)√
π

, sin(2x)√
π
, . . . } is an orthonormal set

in L2([−π, π]).
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Theorem

If a function is given as a series,

f (x) = a0 +
∞∑

k=1

(ak cos(kx) + bk sin(kx))

which converges with respect to the norm in L2([−π, π]), then

a0 =
1

2π

∫ π

−π
f (x)dx ,

an =
1

π

∫ π

−π
f (x) cos(nx)dx ,

and

bn =
1

π

∫ π

−π
f (x) sin(nx)dx .
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Convergence of Fourier series

Theorem

Let f be square integrable on [−π, π], then the partial sums of the Fourier
series

SN(x) = a0 +
N∑

k=1

(ak cos(kx) + bk sin(kx))

converge in square mean to f ,

lim
N→∞

∫ π

−π
|(f − SN)(x)|2dx = 0 .

Remark

This is just convergence in the norm of L2([−π, π]). Other types of
convergence can also be proved, but they require more assumptions.
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Fourier Transform
Definition and elementary properties

Fact

If f ∈ L2(R), then

f̂ (ω) = lim
L→∞

1√
2π

∫ L

−L
f (t)e−iωtdt

exists for almost all ω ∈ R, that is, up to a set which does not count under
the integral. Moreover, f̂ ∈ L2(R) and

f (t) = lim
Ω→∞

1√
2π

∫ Ω

−Ω
f̂ (ω)e iωtdω ,

again, up to a set of t ∈ R which does not count in integrals.
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When a function f ∈ L2([−π, π]) is expanded in an orthonormal basis
{ej}j∈Z, f =

∑
j∈Z〈f , ej〉ej , Pythagoras gives

‖f ‖2 =
∑
j∈Z
|〈f , ej〉|2.

A similar statement is true for the Fourier transform.

Theorem (Plancherel)

Let f ∈ L2(R), then denoting F [f ] = f̂ , we have

‖F [f ]‖2 = ‖f ‖2 .

The same is true for inner products of f , g ∈ L2(R),

〈f , g〉 = 〈F [f ],F [g ]〉 .

Transforming a signal from time to frequency domain preserves geometry
(inner products)!
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Proposition

Let f , h ∈ L2(R), h(t) = f (bt) for b > 0. Then ĥ(ω) = 1
b f̂ (ωb ).

Example

If

f (t) =

{
1, −π ≤ t ≤ π
0, else

then h(t) = f (bt) has the Fourier transform

ĥ(ω) =

√
2

π

sin(πω/b)

ω
.

Proposition

Let f , h ∈ L2(R), h(t) = f (t − a) for some a ∈ R. Then
ĥ(ω) = e−iωa f̂ (ω).
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Sampling and reconstruction

Definition

A function f ∈ L2(R) is called Ω-bandlimited if f̂ (ω) = 0 for almost all ω
with |ω| > Ω.

Theorem

Let f ∈ L2(R) be Ω-bandlimited, then it is continuous and

f (t) =
∞∑

k=−∞
f (

kπ

Ω
)

sin(Ωt − kπ)

Ωt − kπ

and the series on the right-hand side converges in the norm of L2(R) and
uniformly on R.
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Sampling and reconstruction in action
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Convolutions and filters

Definition

Let f , g ∈ L2(R). Then we denote the convolution of f and g by

(f ∗ g)(t) =

∫ ∞
−∞

f (t − x)g(x)dx .

Example

Take

g(x) =

{
1/a, 0 ≤ x ≤ a

0, else

then for any integrable (or square-integrable) f ,

(f ∗ g)(t) =

∫ a

0
f (t − x)dx =

∫ t

t−a
f (x)dx .
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Convolution as multiplication of Fourier transforms

Theorem

Let f , g be integrable functions on R. Then f ∗ g is again integrable and
F [f ∗ g ] =

√
2πf̂ ĝ .

If, in addition f , g ∈ L2(R), then F−1[f̂ ĝ ] = 1√
2π

f ∗ g.

Remark

Convolving f with an integrable function g on R amounts to multiplying
the Fourier transform f̂ with

√
2πĝ .
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Definition

A filter on L2(R) is a linear map L : L2(R)→ L2(R) for which there is a
bounded function m on R such that for all f ∈ L2(R),

F [Lf ] = mf̂ ,

or equivalently,
Lf = F−1[mf̂ ] .

The function m is called the system function of the filter.

Exercise

Find the system function m for the filter

Lf (t) =
1

2
(f (t) + f (t − a)) , a ∈ R .
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From analog to digital filters

We now examine filtering for bandlimited signals.

Question

Given a filter with a system function m and a bandlimited function f , can
we express the sampled values of Lf in terms of those of f ?

Remark

For filtering an Ω-bandlimited function, only the restriction of the system
function m to [−Ω,Ω] matters, because f̂ vanishes outside of this interval.
We can thus expand m in a Fourier series,

m(ω) =
∑
k∈Z

αke−iπkω/Ω ,

where we have changed the sign in the exponent because it is a series for a
function on the frequency domain.
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Theorem

Given an Ω-bandlimited function f and a filter L with system function m
whose restriction to [−Ω,Ω] has Fourier coefficients {αk}k∈Z. Then

Lf (
kπ

Ω
) =

∞∑
l=−∞

f (
(k − l)π

Ω
)αl .

The upshot is that the convolution is replaced by a series formula for the
sampled values of f .

Definition

For two sequences x , y ∈ l2(Z), we define the discrete convolution as

(x ∗ y)k =
∞∑

l=−∞
xlyk−l .
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Oversampling

Since any function with band limit Ω is also aΩ-bandlimited for any a ≥ 1,
we have a generalization of the sampling theorem

Proposition

Let f be square-integrable and Ω-bandimited. Then

f (t) =
∞∑

k=−∞
f (

kπ

aΩ
)

sin(aΩt − kπ)

aΩt − kπ
.

If we now apply a filter which has a system function such that

m(ω) = 1 if |ω| ≤ Ω

then

f (t) = Lf (t) =
∞∑

k=−∞
f (

kπ

aΩ
)(L sinc)(aΩt − kπ)

where sinc(t) = sin(t)
t .
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Since the requirement on the system function of L only concerns the
interval [−Ω,Ω] there is freedom in choosing L and thus the resulting
function for reconstructing the signal! This can be used to improve the
convergence of the series used for reconstruction.

Example

Let f be square-integrable and Ω-bandimited. Then

f (t) =
∞∑

k=−∞
f (

kπ

aΩ
)

cos(Ω(t − kπ/aΩ))− cos(aΩ(t − kπ/aΩ))

a(a− 1)Ω2(t − kπ/aΩ)2
.

Note that for fixed t, the series decays as k−2!
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Haar Wavelets
Spaces of piecewise constant functions

Functions that are constant on all intervals [n, n + 1), n ∈ Z, can be
written as

f (x) =
∞∑

k=−∞
akφ(x − k)

where

φ(x) =

{
1, 0 ≤ x < 1
0, else

.

Definition

We define the space of square-integrable integer-wide step functions as

V0 = {f (x) =
∞∑

k=−∞
akφ(x − k), a ∈ `2(Z)} .
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Adding details

Exercise

Show that the translates {φ(· − k)}k∈Z form an orthonormal basis for V0.

Question

Knowing the values of a function f at one point in each interval [k , k + 1)
determines the function completely. How can we have a function space
with more details?

Answer

Take {2j/2φ(2jx − k)}k∈Z as an orthonormal basis instead of
{φ(x − k)}k∈Z.

B. G. Bodmann (UH Math) From Fourier to Wavelets in 60 Slides September 20, 2008 33 / 62



Levels of resolution

Definition

The space of square-integrable step functions of width 2−j , denoted by Vj ,
is the subspace of L2(R) with the orthonormal basis

{2j/2φ(2jx − k)}k∈Z .

Remark

Functions in this space have possible discontinuities at x = 2−jk , k ∈ Z.
This implies that sampling the function values at 2j evenly-spaced points
in the interval [k, k + 1) determines the function on this interval.
We also note that for j > 0, we have the inclusions V−j ⊂ V−j+1 ⊂ · · ·
⊂ V0 ⊂ V1 ⊂ · · ·⊂ Vj−1 ⊂ Vj ⊂ Vj+1.
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Proposition

For any square integrable function f , f ∈ V0 if and only if f (2jx) ∈ Vj , or
equivalently f ∈ Vj if and only if f (2−jx) ∈ V0.

Question

Is there an orthonormal basis for layers of detail? We would like to have a
basis of translates for V1 ∩ V⊥0 .

Try
ψ(x) = φ(2x)− φ(2x − 1)

then ∫ ∞
−∞

φ(x)ψ(x)dx =

∫ 1/2

0
1dx −

∫ 1

1/2
1dx = 0

and because ψ is supported in [0, 1], it is orthogonal to all φ(x − k)!
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Detail spaces

Indeed, the translates of ψ form a basis for the detail spaces that bridge
between V0 and V1. More generally, we can define a subspace of Vj+1

which is orthogonal to Vj .

Theorem

Let Wj be the span of all functions in L2(R) such that

f (x) =
∑
k∈Z

akψ(2jx − k) .

Then Wj = V⊥j ∩ Vj+1.
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Haar decomposition
Stripping layers of detail

Now we can perform a recursive splitting. Each fj ∈ Vj is expressed
uniquely as the sum

fj = wj−1 + fj−1

where wj−1 ∈Wj−1 and fj−1 ∈ Vj−1. This orthogonal splitting is
abbreviated by

Vj = Wj−1 ⊕ Vj−1 .

Iterating the splitting gives

Vj = Wj−1 ⊕Wj−2 ⊕ Vj−2

and so on.
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If we let j →∞ and keep the last term in this direct sum decomposition
fixed, say V0, then we obtain a unique representation of each vector as a
series of vectors from Wj , j ≥ 0, and V0.

Theorem

For each f ∈ L2(R), denote by wj the orthogonal projection of f onto Wj .
Then

f = f0 +
∞∑
j=0

wj

with vectors that are orthogonal and a series that converges in norm. In
short,

L2(R) = V0 ⊕W0 ⊕W1 ⊕W2 ⊕ · · ·
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Question

Suppose we have fj(x) =
∑

k∈Z akφ(2jx − k), given by the values {ak}.
How do we compute the coefficients with respect to the orthonormal basis
of Vj given by

{φ(x − k)}k∈Z and {2l/2ψ(2lx − k)}k∈Z,0≤l≤j−1 ?

Lemma

For the Haar scaling function φ and the wavelet ψ,

φ(2jx) =
1

2
(ψ(2j−1x) + φ(2j−1x))

and

φ(2jx − 1) =
1

2
(φ(2j−1x)− ψ(2j−1x)) .

So we can use this to convert
∑

k akφ(2jx − k) ∈ Vj into∑
k(ckφ(2j−1x − k) + dkψ(2j−1x − k)).
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Theorem

Given a square integrable function fj(x) =
∑

k a
(j)
k φ(2jx − k) then

fj(x) =
∑
k

b
(j−1)
k ψ(2j−1x − k) +

∑
k

a
(j−1)
k φ(2j−1x − k)

with

b
(j−1)
k =

a
(j)
2k − a

(j)
2k+1

2

and

a
(j−1)
k =

a
(j)
2k + a

(j)
2k+1

2
.

We note that both of these expressions are obtained from a digital filter

applied to {a(j)
l }l∈Z. We can repeat this procedure iteratively to obtain a

coefficient tree containing {b(j)
k }k∈Z, {b(j−1)

k }k∈Z, {b(j−2)
k }k∈Z, . . . and

finally {a(0)
k }k∈Z.

B. G. Bodmann (UH Math) From Fourier to Wavelets in 60 Slides September 20, 2008 40 / 62



Reconstruction

Question

Can we reverse this procedure, that is, reconstruct the coefficients {a(j)
k }

from {b(j−1)
k }k∈Z {b

(j−2)
k }k∈Z, . . . , {b(0)

k }k∈Z and {a(0)
k }k∈Z in this

coefficient tree?

Answer

We can reverse the decomposition by

a
(j+1)
2k = a

(j)
k + b

(j)
k

and
a

(j+1)
2k+1 = a

(j)
k − b

(j)
k

and iterate this procedure.
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Filters and up/downsampling

Definition

For any sequence {xk}k∈Z and {hk}k∈Z, both in `2(Z), we define the
digital/discrete filter of x by

(Hx)k = (h ∗ x)k =
∑
n∈Z

xk−nhn .

Definition

The downsampling operator D acts on a square-summable sequence
{xk}k∈Z by

(Dx)k = x2k .
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With these two operations, we can express the analysis and reconstruction
algorithm.

Remark

Let

h = (. . . , 0, 0, . . . , 0,−1

2
,

1

2︸︷︷︸
k=0

, 0, 0, . . . )

and let

l = (. . . , 0, 0, . . . , 0,
1

2
,

1

2︸︷︷︸
k=0

, 0, 0, . . . ) .

Then

(Hx)k = (h ∗ x)k =
1

2
xk −

1

2
xk+1

and

(Lx)k = (l ∗ x)k =
1

2
xk +

1

2
xk+1 .
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Remark

Therefore,

b
(j−1)
k =

1

2
(a

(j)
2k − a

(j)
2k+1) = (DHa(j))k

and
a

(j−1)
k = (DLa(j))k .

The reconstruction algorithm can also be cast in a similar form, if we
define the upsampling operator.

Definition

The upsampling operator U acts on a square-summable sequence {xk}k∈Z
by

(Ux)k =

{
xk/2, k even

0, k odd
.
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Remark

Let H̃ and L̃ be given by

h̃ = (. . . , 0, 0, . . . , 0, 0, 1︸︷︷︸
k=0

,−1, 0, . . . )

and let
l̃ = (. . . , 0, 0, . . . , 0, 0, 1︸︷︷︸

k=0

, 1, 0, . . . ) .

Thus,
a(j) = L̃Ua(j−1) + H̃Ub(j−1) .
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Wavelet decomposition and reconstruction with filters

Split detail from lower resolution level:

b
(j−1)
k = (DHa(j))k

and
a

(j−1)
k = (DLa(j))k .

Fuse lower resolution and detail level:

a(j) = L̃Ua(j−1) + H̃Ub(j−1) .

B. G. Bodmann (UH Math) From Fourier to Wavelets in 60 Slides September 20, 2008 46 / 62



Application: step detection

Remark

If a function f ∈ Vj is slowly changing except for finitely many
discontinuities, then applying the decomposition shows that only wavelet

coefficients b
(j−1)
k near discontinuities are large!

Comparison: Signal vs.
wavelet coefficients

0 1 2 3 4 5 6 7 8 9 10
−300

−200

−100

0

100

200

300

400
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Compression?

For piecewise constant functions, many coefficients would be exactly zero,
i.e. can be discarded. Only need to store detail coefficients close to steps,
and coefficients for low resolution level everywhere. Note: Downsampling
reduces data by factor 2 in each decomposition step. Compression!

Question

Is there a version of φ, ψ which will compress piecewise
quadratic/cubic/etc functions similarly?

Answer

The family of Daubechies wavelets have the desired property.
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Multiresolution Analysis
Defining properties and examples

Definition

Let {Vj} be a family of subspaces in L2(R) such that any Cauchy
sequence in each Vj converges. Then {Vj} is called a multiresolution
analysis if the following properties hold.

1 Vj ⊂ Vj+1 for all j ∈ Z,

2 ∪jVj = L2(R) (union is dense)

3 ∩jVj = {0}
4 f ∈ Vj ↔ f (2−jx) ∈ V0

5 There is φ ∈ V0 such that {φ(x − k)}k∈Z is an orthonormal basis for
V0. Each Vj is called an approximation subspace. The resulting
Wj = V⊥j ∩ Vj+1 are called detail spaces.
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In short, MRAs have decomposition and reconstruction algorithms like the
Haar wavelet transform.

Example

As first example of a multiresolution analysis, we note that the Haar
scaling function satisfied the required properties.

Example

A second example of a multiresolution analysis is given by the
approximation spaces which consist of 2jπ-bandlimited functions:

Vj = {f ∈ L2(R) : f̂ (ω) = 0 for all |ω| > 2jπ} .

Remark

The Daubechies construction is “in between” these two examples.

B. G. Bodmann (UH Math) From Fourier to Wavelets in 60 Slides September 20, 2008 50 / 62



The scaling relation

Theorem

If {Vj} is a multiresolution analysis with scaling function φ, then there is a
sequence {pk}k∈Z ∈ `2(Z) such that for almost every x ∈ R,

φ(x) =
∑
k∈Z

pkφ(2x − k)

and

pk = 2

∫ ∞
−∞

φ(x)φ(2x − k)dx .

Example

For the Haar MRA, p0 = p1 = 1, and all other pj are zero.
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Wavelet design in the frequency domain

Problem

Find scaling coefficients {pk}k∈Z that belong to MRAs. Design MRAs
with special properties such as smooth scaling functions, compactly
supported ones, etc.

Strategy

It will become apparent that the frequency-domain formulation is
convenient for such problems.

To this end, we examine the two-scale relation. We use the notation

p(ω) =
1

2

∑
k∈Z

pke−ikω

or

P(z) =
1

2

∑
k∈Z

pkzk .
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Theorem

If the integer translates of φ ∈ L2(R) form an orthonormal set and
φ(x) =

∑
k∈Z pkφ(2x − k), then P(z) satisfies the quadrature mirror

property
|P(z)|2 + |P(−z)|2 = 1, |z | = 1 .

Example (Haar MRA)

For

P(z) =
1

2
(1 + z)

we obtain for |z | = 1 that

|P(z)|2 + |P(−z)|2 =
1

4
(|1 + z |2 + |1− z |2) =

1

4
(2 + 2|z |2) = 1 .
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The next theorem addresses is whether the quadrature-mirror property of
P(z) is enough to create a scaling function φ for an MRA.

Theorem

Given P(z) = 1
2

∑
k pkzk with a summable sequence {pk} satisfying

1 P(1) = 1,

2 |P(z)|2 + |P(−z)|2 = 1, |z | = 1,

3 |P(e it)| > 0, |t| ≤ π/2,

then the iteration
φn(x) =

∑
k

pkφn−1(2x − k)

starting with the Haar scaling function φ0 converges to the scaling
function φ of an MRA.
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The Daubechies wavelet
Vanishing moments

Suppose we are given an MRA with summable scaling coefficients
{pk}k∈Z, which satisfy the three properties on the preceding slide.

Proposition

A wavelet ψ is obtained by

ψ(x) =
∑
k

(−1)kp1−kφ(2x − k)

or alternatively
ψ̂(ξ) = Q(e−iξ/2)φ̂(ξ/2)

with

Q(z) =
1

2

∑
k

(−1)kp1−kzk .
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If φ is integrable, then |φ̂(ξ/2)| ≤ M and

|ψ̂(ξ)| ≤ M|Q(e−iξ/2)| .

Corollary

This means, if Q(e−iξ/2) has vanishing derivatives at ξ = 0, then so does
ψ̂.

For example assuming ψ̂(0) = ψ̂′(0) = 0, then we can conclude∫ ∞
−∞

ψ(x)dx =

∫ ∞
−∞

xψ(x)dx = 0 .

Consequently, any function which is linear on the support of ψ,
f (x) = ax + b for all x where ψ(x) 6= 0, gives vanishing wavelet coefficients∫ ∞

−∞
f (x)ψ(x)dx = 0 .
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Compression
Wavelet coefficients for a piecewise linear signal

If the wavelet has a vanishing first moment, then the coefficients are zero
where the signal is linear:
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Construction of the Daubechies wavelet

Try the simplest case first, a polynomial P.

Problem

Find a polynomial P such that

p(ξ) = P(e−iξ)

has the following properties:

1 p(0) = 1,

2 |p(ξ)|2 + |p(ξ + π)|2 = 1,

3 |p(ξ)| > 0 for −π/2 ≤ ξ ≤ π/2

and the associated ψ has vanishing zeroth and first moments.
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Example

The polynomial

p3(ξ) =
1 +
√

3

8
+

3 +
√

3

8
e−iξ +

3−
√

3

8
e−2iξ +

1−
√

3

8
e−3iξ

is an example, which belongs to the Daubechies wavelet.
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Theorem

The Daubechies wavelet ψ is continuous and has vanishing zeroth and first
moments, ∫ ∞

−∞
ψ(x)dx =

∫ ∞
−∞

xψ(x)dx = 0 .
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Outlook

Beyond 60 slides:

Daubechies wavelets for piecewise quadratic, cubic etc. can also be
found.

More generally, given a space of typical signals, we can find wavelets
which mimic signal properties and are most efficient for
decomposition, denoising and compression.

Wavelets in higher dimensions – stay tuned!

Wavelets and oversampling? Ditto!

More detail, Fourier and wavelets in smaller portions: MATH 4355
– Mathematics of Signal Representations – Spring 2009.
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