High-Dimensional Measures and Geometry Lecture Notes from Jan 21, 2010

taken by Sneh Lata

2.1 High-dimensional Gaussian measures

2.1.1 Proposition. Let γ_{n} be the standard Gaussian measure on \mathbb{R}^{n}. Then for any $\delta \geq 0, n \in \mathbb{N}$,
(i) $\gamma_{n}\left(\left\{x \in \mathbb{R}^{n}:\|x\|^{2} \geq n+\delta\right\}\right) \leq\left(\frac{n}{n+\delta}\right)^{-n / 2} e^{-\delta / 2}$
and if $0<\delta \leq n$, then
(ii) $\gamma_{n}\left(\left\{x \in \mathbb{R}^{n}:\|x\|^{2} \leq n-\delta\right\}\right) \leq\left(\frac{n}{n-\delta}\right)^{-n / 2} e^{-\delta / 2}$.

Proof. We first prove (i). Let $0<\lambda<1$, then

$$
\|x\|^{2} \geq n+\delta \Rightarrow \lambda \frac{\|x\|^{2}}{2} \geq \lambda \frac{(n+\delta)}{2} \Rightarrow e^{\lambda\|x\|^{2} / 2} \geq e^{\lambda(n+\delta) / 2} .
$$

Then, according to the Laplace transform technique,

$$
\begin{aligned}
\gamma_{n}\left(\left\{x \in \mathbb{R}^{n}:\|x\|^{2} \geq n+\delta\right\}\right) & \leq e^{-\lambda(n+\delta) / 2} \int_{\mathbb{R}^{n}} e^{\lambda\|x\|^{2} / 2} d \gamma_{n} \\
& =\frac{e^{-\lambda(n+\delta) / 2}}{(2 \pi)^{n / 2}} \int_{\mathbb{R}^{n}} e^{-(1-\lambda)\|x\|^{2} / 2} d x \\
& =\frac{e^{-\lambda(n+\delta) / 2}}{(1-\lambda)^{n / 2}} .
\end{aligned}
$$

Finally, choosing $\lambda=\frac{\delta}{n+\delta}$ gives (i).
To prove (ii), again we consider $\lambda>0$, then

$$
\|x\|^{2} \leq n-\delta \Rightarrow e^{-\lambda\|x\|^{2} / 2} \geq e^{-\lambda(n-\delta) / 2} .
$$

Using the Laplace transform we get,

$$
\begin{aligned}
\gamma_{n}\left(\left\{x \in \mathbb{R}^{n}:\|x\|^{2} \leq n-\delta\right\}\right) & \leq e^{\lambda(n-\delta) / 2} \int_{\mathbb{R}^{n}} e^{-\lambda\|x\|^{2} / 2} d \gamma_{n} \\
& =\frac{e^{\lambda(n-\delta) / 2}}{(2 \pi)^{n / 2}} \int_{\mathbb{R}^{n}} e^{-(1+\lambda)\|x\|^{2} / 2} d x \\
& =\frac{e^{\lambda(n-\delta) / 2}}{(1+\lambda)^{n / 2}} .
\end{aligned}
$$

Lastly, (ii) follows by choosing $\lambda=\frac{\delta}{n-\delta}$.
2.1.2 Corollary. Let γ_{n} denote the standard Gaussian measure on \mathbb{R}^{n}. Then for $0<\epsilon<1$ and $n \in \mathbb{N}$ we have,
(i) $\gamma_{n}\left(\left\{x \in \mathbb{R}^{n}:\|x\|^{2} \geq \frac{n}{1-\epsilon}\right\}\right) \leq e^{-n \epsilon^{2} / 4}$
(ii) $\gamma_{n}\left(\left\{x \in \mathbb{R}^{n}:\|x\|^{2} \leq(1-\epsilon) n\right\}\right) \leq e^{-n \epsilon^{2} / 4}$.

Proof. We let $\delta=\frac{n \epsilon}{1-\epsilon}$ in (i) of Proposition 2.1.1, then

$$
\begin{aligned}
\gamma_{n}\left(\left\{x \in \mathbb{R}^{n}:\|x\|^{2} \geq \frac{n}{1-\epsilon}\right\}\right) & \leq(1-\epsilon)^{-n / 2} e^{\frac{-n \epsilon}{2(1-\epsilon)}} \\
& =e^{\frac{-n}{2(}\left(\ln (1-\epsilon)+\frac{\epsilon}{1-\epsilon}\right)} .
\end{aligned}
$$

By writing the power series of $\ln (1-\epsilon)$ and $\frac{\epsilon}{1-\epsilon}$ we get

$$
\ln (1-\epsilon)+\frac{\epsilon}{1-\epsilon} \leq e^{\epsilon^{2} / 2}
$$

Thus,

$$
\gamma_{n}\left(\left\{x \in \mathbb{R}^{n}:\|x\|^{2} \geq \frac{n}{1-\epsilon}\right\}\right) \leq e^{\frac{-n \epsilon^{2}}{4}} .
$$

To prove (ii), we take $\delta=n \epsilon$ in (ii) of Proposition 2.1.1. Then,

$$
\begin{aligned}
\gamma_{n}\left(x \in \mathbb{R}^{n}:\|x\|^{2} \leq(1-\epsilon) n\right) & \leq(1-\epsilon)^{n / 2} e^{n \epsilon / 2} \\
& =e^{\frac{n}{2}(\ln (1-\epsilon)+\epsilon)}
\end{aligned}
$$

Again, using the power series of $\ln (1-\epsilon)$ we get

$$
\gamma_{n}\left(x \in \mathbb{R}^{n}:\|x\|^{2} \leq(1-\epsilon) n\right) \leq e^{\frac{-n \epsilon^{2}}{4}}
$$

Note, in Corollay 2.1.2 if we choose a sequence $\left\{\epsilon_{n}\right\} \rightarrow 0$ such that the sequence $\left\{n \epsilon_{n}{ }^{2}\right\} \rightarrow$ ∞, then $\gamma_{n}\left(\left\{x \in \mathbb{R}^{n}: n\left(1-\epsilon_{n}\right) \leq\|x\|^{2} \leq \frac{n}{1-\epsilon_{n}}\right\}\right) \rightarrow 1$. So, we conclude that the Gaussian measure is supported on a thin spherical shell in high dimensions. We use this later to show concentration of measure for γ_{n} implies concentration for μ, the spherical measure.

2.2 Gaussian measures and projections

let γ_{n} be the standard Gaussian measure and $V \subseteq \mathbb{R}^{n}$ a k-dimensional subspace with orthogonal projection $P: \mathbb{R}^{n} \rightarrow V$, then the measure induced by P on V is γ_{k} (with respect to any orthonormal basis on V).
2.2.1 Question. Why is the induced measure γ_{k} ?

Without loss of generality, we can rotate the sphere so that V is spanned by $\left\{e_{1}, \ldots, e_{k}\right\}$. Now, if we let $A \subseteq V$ is measurable, then

$$
\begin{aligned}
\gamma_{n}\left(P^{-1}(A)\right) & =\frac{1}{(2 \pi)^{n / 2}} \int_{A \times \mathbb{R}^{n-k}} e^{-\|x\|^{2} / 2} d x \\
& =\frac{1}{(2 \pi)^{k}} \int_{A} e^{-\|x\|^{2} / 2} d x \\
& =\gamma_{k}(A) .
\end{aligned}
$$

We can now state a lemma by Johnson and Lindenstrauss, Part I.
2.2.2 Lemma. Let γ_{n} be the standard Gaussian measure, V a k-dimensional subspace of \mathbb{R}^{n}, P the orthogonal projection onto V, then for $0<\epsilon<1$,
(i) $\gamma_{n}\left(\left\{x \in \mathbb{R}^{n}: \sqrt{\frac{n}{k}}\|P x\| \geq(1-\epsilon)^{-1}\|x\|\right\}\right) \leq e^{-\frac{\epsilon^{2} k}{4}}+e^{-\frac{\epsilon^{2} n}{4}}$
(ii) $\gamma_{n}\left(\left\{x \in \mathbb{R}^{n}: \sqrt{\frac{n}{k}}\|P x\|\right\} \leq(1-\epsilon)\|x\|\right) \leq e^{-\frac{\epsilon^{2} k}{4}}+e^{-\frac{\epsilon^{2} n}{4}}$.

Proof. Since the Gaussian measure γ_{n} is concentrated in a spherical shell, we recall

$$
\gamma_{n}\left(\left\{x \in \mathbb{R}^{n}:\|x\| \geq \sqrt{n(1-\epsilon)}\right\}\right) \geq 1-e^{-\frac{\epsilon^{2} n}{4}}
$$

Similarly for γ_{k},

$$
\gamma_{k}\left(\left\{x \in \mathbb{R}^{k}:\|x\| \leq \sqrt{\frac{k}{1-\epsilon}}\right\}\right) \geq 1-e^{-\frac{\epsilon^{2} k}{4}}
$$

Note that

$$
\begin{aligned}
\gamma_{n}\left(\left\{x \in \mathbb{R}^{n}: x \in E_{1} \operatorname{or} P x \in E_{2}\right\}\right) & \leq \gamma_{n}\left(\left\{x \in \mathbb{R}^{n}: x \in E_{1}\right\}\right)+\gamma_{n}\left(\left\{x \in \mathbb{R}^{n}: P x \in E_{2}\right\}\right) \\
& =\gamma_{n}\left(E_{1}\right)+\gamma_{k}\left(E_{2}\right)
\end{aligned}
$$

Thus,

$$
\gamma_{n}\left(\left\{x \in \mathbb{R}^{n}:\|x\|<\sqrt{n(1-\epsilon)} \text { or }\|P x\|>\sqrt{n(1-\epsilon)}\right\}\right) \leq e^{-\frac{\epsilon^{2} n}{4}}+e^{-\frac{\epsilon^{2} k}{4}}
$$

and so,

$$
\begin{aligned}
\gamma_{n}\left(\left\{x \in \mathbb{R}^{n}: \frac{\|x\|}{\sqrt{n}} \leq \sqrt{1-\epsilon}\right.\right. & \left.\left.\leq(1-\epsilon) \frac{\|P x\|}{\sqrt{k}}\right\}\right) \\
& \geq 1-\left(e^{-\frac{\epsilon^{2} n}{4}}+e^{-\frac{\epsilon^{2} k}{4}}\right)
\end{aligned}
$$

which is the claimed bound for the measure of $\left\{x \in \mathbb{R}^{n}: \sqrt{\frac{n}{k}}\|P x\| \geq(1-\epsilon)^{-1}\|x\|\right\}$. Similarly, we obtain (ii) from (ii) of Corollary 2.1.2.

2.3 Gaussian vs. surface measures

Define a normalized map $\phi: \mathbb{R}^{n} \backslash\{0\} \rightarrow S^{n-1}, x \mapsto \frac{x}{\|x\|}$, then the image measure of γ_{n} under ϕ is μ_{n}, the surface measure of S^{n-1}.
2.3.1 Corollary. If μ_{n} is rotation-invariant probability measure on $S^{n-1}, V \subseteq \mathbb{R}^{n}$ a k-dimensional subspace and P the orthogonal projection onto V, then

$$
\mu_{n}\left(\left\{x \in \mathbb{R}^{n}: \sqrt{\frac{n}{k}}\|P x\| \geq(1-\epsilon)^{-1}\right\}\right) \leq e^{-\frac{\epsilon^{2} n}{4}}+e^{-\frac{\epsilon^{2} k}{4}}
$$

and

$$
\mu_{n}\left(\left\{x \in \mathbb{R}^{n}: \sqrt{\frac{n}{k}}\|P x\| \leq 1-\epsilon\right\}\right) \leq e^{-\frac{\epsilon^{2} n}{4}}+e^{-\frac{\epsilon^{2} k}{4}}
$$

Proof. Changing the norm of x on both sides does not changes the validity of (i) and (ii) in Lemma 2.2.2.

