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2.1 High-dimensional Gaussian measures

2.1.1 Proposition. Let γn be the standard Gaussian measure on Rn. Then for any δ ≥ 0, n ∈ N,

(i) γn({x ∈ Rn : ‖x‖2 ≥ n+ δ}) ≤ ( n
n+δ

)−n/2e−δ/2

and if 0 < δ ≤ n, then

(ii) γn({x ∈ Rn : ‖x‖2 ≤ n− δ}) ≤ ( n
n−δ )

−n/2e−δ/2.

Proof. We first prove (i). Let 0 < λ < 1, then

‖x‖2 ≥ n+ δ ⇒ λ
‖x‖2

2
≥ λ

(n+ δ)

2
⇒ eλ‖x‖

2/2 ≥ eλ(n+δ)/2.

Then, according to the Laplace transform technique,

γn({x ∈ Rn : ‖x‖2 ≥ n+ δ}) ≤ e−λ(n+δ)/2

∫
Rn
eλ‖x‖

2/2dγn

=
e−λ(n+δ)/2

(2π)n/2

∫
Rn
e−(1−λ)‖x‖2/2dx

=
e−λ(n+δ)/2

(1− λ)n/2
.

Finally, choosing λ = δ
n+δ

gives (i).
To prove (ii), again we consider λ > 0, then

‖x‖2 ≤ n− δ ⇒ e−λ‖x‖
2/2 ≥ e−λ(n−δ)/2.

Using the Laplace transform we get,

γn({x ∈ Rn : ‖x‖2 ≤ n− δ}) ≤ eλ(n−δ)/2
∫

Rn
e−λ‖x‖

2/2dγn

=
eλ(n−δ)/2

(2π)n/2

∫
Rn
e−(1+λ)‖x‖2/2dx

=
eλ(n−δ)/2

(1 + λ)n/2
.

Lastly, (ii) follows by choosing λ = δ
n−δ .
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2.1.2 Corollary. Let γn denote the standard Gaussian measure on Rn. Then for 0 < ε < 1 and
n ∈ N we have,

(i) γn({x ∈ Rn : ‖x‖2 ≥ n
1−ε}) ≤ e−nε

2/4

(ii) γn({x ∈ Rn : ‖x‖2 ≤ (1− ε)n}) ≤ e−nε
2/4.

Proof. We let δ = nε
1−ε in (i) of Proposition 2.1.1, then

γn({x ∈ Rn : ‖x‖2 ≥ n

1− ε
}) ≤ (1− ε)−n/2e

−nε
2(1−ε)

= e
−n
2

(ln(1−ε)+ ε
1−ε ).

By writing the power series of ln(1− ε) and ε
1−ε we get

ln(1− ε) +
ε

1− ε
≤ eε

2/2

Thus,

γn({x ∈ Rn : ‖x‖2 ≥ n

1− ε
}) ≤ e

−nε2
4 .

To prove (ii), we take δ = nε in (ii) of Proposition 2.1.1. Then,

γn(x ∈ Rn : ‖x‖2 ≤ (1− ε)n) ≤ (1− ε)n/2enε/2

= e
n
2
(ln(1−ε)+ε).

Again, using the power series of ln(1− ε) we get

γn(x ∈ Rn : ‖x‖2 ≤ (1− ε)n) ≤ e
−nε2

4 .

Note, in Corollay 2.1.2 if we choose a sequence {εn} → 0 such that the sequence {nεn2} →
∞, then γn({x ∈ Rn : n(1 − εn) ≤ ‖x‖2 ≤ n

1−εn}) → 1. So, we conclude that the Gaussian
measure is supported on a thin spherical shell in high dimensions. We use this later to show
concentration of measure for γn implies concentration for µ, the spherical measure.

2.2 Gaussian measures and projections

let γn be the standard Gaussian measure and V ⊆ Rn a k-dimensional subspace with orthogonal
projection P : Rn → V, then the measure induced by P on V is γk (with respect to any
orthonormal basis on V ).

2.2.1 Question. Why is the induced measure γk?
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Without loss of generality, we can rotate the sphere so that V is spanned by {e1, . . . , ek}.
Now, if we let A ⊆ V is measurable, then

γn(P
−1(A)) =

1

(2π)n/2

∫
A×Rn−k

e−‖x‖
2/2dx

=
1

(2π)k

∫
A

e−‖x‖
2/2dx

= γk(A).

We can now state a lemma by Johnson and Lindenstrauss, Part I.

2.2.2 Lemma. Let γn be the standard Gaussian measure, V a k-dimensional subspace of Rn, P
the orthogonal projection onto V, then for 0 < ε < 1,

(i) γn({x ∈ Rn :
√

n
k
‖Px‖ ≥ (1− ε)−1‖x‖}) ≤ e−

ε2k
4 + e−

ε2n
4

(ii) γn({x ∈ Rn :
√

n
k
‖Px‖} ≤ (1− ε)‖x‖) ≤ e−

ε2k
4 + e−

ε2n
4 .

Proof. Since the Gaussian measure γn is concentrated in a spherical shell, we recall

γn({x ∈ Rn : ‖x‖ ≥
√
n(1− ε)}) ≥ 1− e−

ε2n
4 .

Similarly for γk,

γk({x ∈ Rk : ‖x‖ ≤
√

k

1− ε
}) ≥ 1− e−

ε2k
4 .

Note that

γn({x ∈ Rn : x ∈ E1orPx ∈ E2}) ≤ γn({x ∈ Rn : x ∈ E1}) + γn({x ∈ Rn : Px ∈ E2})
= γn(E1) + γk(E2)

Thus,

γn({x ∈ Rn : ‖x‖ <
√
n(1− ε) or ‖Px‖ >

√
n(1− ε)}) ≤ e−

ε2n
4 + e−

ε2k
4 .

and so,

γn({x ∈ Rn :
‖x‖√
n
≤
√

1− ε ≤ (1− ε)‖Px‖√
k
})

≥ 1− (e−
ε2n
4 + e−

ε2k
4 )

which is the claimed bound for the measure of {x ∈ Rn :
√

n
k
‖Px‖ ≥ (1− ε)−1‖x‖}. Similarly,

we obtain (ii) from (ii) of Corollary 2.1.2.
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2.3 Gaussian vs. surface measures

Define a normalized map φ : Rn \ {0} → Sn−1, x 7→ x
‖x‖ , then the image measure of γn under φ

is µn, the surface measure of Sn−1.

2.3.1 Corollary. If µn is rotation-invariant probability measure on Sn−1, V ⊆ Rn a k-dimensional
subspace and P the orthogonal projection onto V, then

µn({x ∈ Rn :

√
n

k
‖Px‖ ≥ (1− ε)−1}) ≤ e−

ε2n
4 + e−

ε2k
4

and

µn({x ∈ Rn :

√
n

k
‖Px‖ ≤ 1− ε}) ≤ e−

ε2n
4 + e−

ε2k
4 .

Proof. Changing the norm of x on both sides does not changes the validity of (i) and (ii) in
Lemma 2.2.2.
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