High-Dimensional Measures and Geometry Lecture Notes from Jan 26, 2010
 taken by Nick Maxwell

Denote by $G_{k}\left(\mathbb{R}^{n}\right)$ the Grassmannian, which is the collection of k-dimensional subspaces of \mathbb{R}^{n}. Define a distance on $G_{k}\left(\mathbb{R}^{n}\right)$ by the operator norm of the difference between corresponding orthogonal projections. That is, $P_{1}: \mathbb{R}^{n} \rightarrow V_{1}, P_{2}: \mathbb{R}^{n} \rightarrow V_{2}$, with V_{1}, V_{2} k-dimensional, then $d\left(V_{1}, V_{2}\right)=\|P 1-P 2\|$. This distance is invariant under the orthogonal group. So, $\left\|P_{1}-P_{2}\right\|=\left\|O P_{1} O^{*}-O P_{2} O^{*}\right\|=\left\|O\left(P_{1}-P_{2}\right) O^{*}\right\|, O \in \mathcal{O}(n)$, the set of unitary operators on \mathbb{R}^{n}.

Also, $\mathcal{O}(n)$ acts transitively on projections, for all rank-k $P_{1}, P_{2}, \exists O \in \mathcal{O}(n)$ s.t. $P_{2}=O P_{1} O^{*}$ $\Rightarrow \exists$! Borel probability measure on $G_{k}\left(\mathbb{R}^{n}\right)$, invariant under $\mathcal{O}(n)$, we denote this measure by $\mu_{n, k}$.

This measure can be obtained from the left-invariant Haar measure ν_{n} on $\mathcal{O}(n)$ by the map

$$
\Psi: \mathcal{O} \rightarrow O P_{V_{1}} O^{*}
$$

$P_{V_{1}}$ an orthogonal projection onto some fixed k-dimensional subspace.
In terms of subspaces, we have

$$
\mu_{n, k}(V)=\nu_{n}\left(\left\{U \in \mathcal{O}(n): U\left(V_{1}\right) \in V\right\}\right), V \in G_{k}\left(\mathbb{R}^{n}\right)
$$

2.3.1 Question. Why is this identity true?

This is because the image measure is invariant under the action of $\mathcal{O}(n)$, by the commutative diagram below.

[1] This is left multiplication by O^{\prime}, for some fixed $O^{\prime} \in \mathcal{O}(n)$
The "effective map" between $G_{k}\left(\mathbb{R}^{n}\right)$ is invariant under $\mathcal{O}(n)$ because $O^{\prime} P_{V}\left(O^{\prime}\right)^{*}=O^{\prime} O P_{V_{1}} O^{*}\left(O^{\prime}\right)^{*}$ and this projection has range $O^{\prime}\left(O\left(V_{1}\right)\right)=\left(O^{\prime} O\right)\left(V_{1}\right)$
2.3.2 Lemma. Let $x \in \mathbb{R}^{n}, x \neq 0$, let $\mu_{n, k}$ be the $\mathcal{O}(n)$-invariant measure on $G_{k}\left(\mathbb{R}^{n}\right)$, and for each $V \in G_{k}\left(\mathbb{R}^{n}\right)$, let P_{V} denote orthogonal projection onto V. Then, for $0<\epsilon<1$,

$$
\mu_{n, k}\left(\left\{V \in G_{k}\left(\mathbb{R}^{n}\right) ; \sqrt{\frac{n}{k}}\left\|P_{V}(x)\right\| \geq \frac{1}{1-\epsilon}\|x\|\right\}\right) \leq \exp \left(-\epsilon^{2} k / 4\right)+\exp \left(-\epsilon^{2} n / 4\right)
$$

and

$$
\mu_{n, k}\left(\left\{V \in G_{k}\left(\mathbb{R}^{n}\right) ; \sqrt{\frac{n}{k}}\left\|P_{V}(x)\right\| \leq(1-\epsilon)\|x\|\right\}\right) \leq \exp \left(-\epsilon^{2} k / 4\right)+\exp \left(-\epsilon^{2} n / 4\right)
$$

Proof. Without loss of generality, choose $\|x\|=1$. Choose any k-dimensional subspace, V_{1}, and if $U \in \mathcal{O}(n)$, let $V=U\left(V_{1}\right), P_{V}$ the orthogonal projection onto V_{1}, and use the fact that the measure ν_{n} on $\mathcal{O}(n)$ induces the Grassmanian measure $\mu_{n, k}$.

This implies,

$$
\mu_{n, k}\left(\left\{V \in G_{k}\left(\mathbb{R}^{n}\right) ; \sqrt{\frac{n}{k}}\left\|P_{V}(x)\right\| \geq \frac{1}{1-\epsilon}\right\}\right)=\nu_{n}\left(\left\{U \in \mathcal{O}(n) ; \sqrt{\frac{n}{k}}\left\|P_{U\left(V_{1}\right)}(x)\right\| \geq \frac{1}{1-\epsilon}\right\}\right)
$$

and

$$
\mu_{n, k}\left(\left\{V \in G_{k}\left(\mathbb{R}^{n}\right) ; \sqrt{\frac{n}{k}}\left\|P_{V}(x)\right\| \leq(1-\epsilon)\right\}\right)=\nu_{n}\left(\left\{U \in \mathcal{O}(n) ; \sqrt{\frac{n}{k}}\left\|P_{U\left(V_{1}\right)}(x)\right\| \leq(1-\epsilon)\right\}\right)
$$

The projected length of x is

$$
\left\|P_{U\left(V_{1}\right)}(x)\right\|=\left\|U^{*} P_{U\left(V_{1}\right)} U U^{*} x\right\|=\left\|P_{V_{1}} U^{*} x\right\|
$$

and the image measure induced by ν_{n} under $\Phi_{x}: \mathcal{O}(n) \rightarrow S^{n-1}, U \mapsto U^{*} x$ is the surface measure on sphere, μ_{n}.

Thus,

$$
\nu_{n}\left(\left\{U \in \mathcal{O}(n) ; \sqrt{\frac{n}{k}}\left\|P_{U\left(V_{1}\right)}(x)\right\| \geq \frac{1}{1-\epsilon}\right\}\right)=\mu_{n}\left(\left\{y \in S^{n-1} ; \sqrt{\frac{n}{k}}\left\|P_{V_{1}}(y)\right\| \geq \frac{1}{1-\epsilon}\right\}\right)
$$

and

$$
\nu_{n}\left(\left\{U \in \mathcal{O}(n) ; \sqrt{\frac{n}{k}}\left\|P_{U\left(V_{1}\right)}(x)\right\| \leq(1-\epsilon)\right\}\right)=\mu_{n}\left(\left\{y \in S^{n-1} ; \sqrt{\frac{n}{k}}\left\|P_{V_{1}}(y)\right\| \leq(1-\epsilon)\right\}\right)
$$

now applying the corollary in section 2.3 (gaussian v.s. surface measure), finishes the proof.

Summary: Norm reduction for vectors on S^{n-1} under a fixed projection is "mostly" by factor $\sqrt{\frac{k}{n}}(1 \pm \epsilon)$, same is true for fixed vector under projections onto "many subspaces", in $G_{k}\left(\mathbb{R}^{n}\right)$.

Question: what about more than one vector?
2.3.3 Theorem. (Johnson-Lindenstrauss, Part II)

Let a_{1}, \ldots, a_{N} be points in \mathbb{R}^{n}, given $\epsilon>0$, choose $k \in \mathbb{N}$ s.t.

$$
N(N-1)\left(\exp \left(-k \epsilon^{2} / 4\right)+\exp \left(-n \epsilon^{2} / 4\right)\right) \leq \frac{1}{3}
$$

and let $G_{k}\left(\mathbb{R}^{n}\right)$ be the set of k-dimensional subspaces, then
$\mu_{n, k}\left(\left\{V \in G_{k}\left(\mathbb{R}^{n}\right) ;(1-\epsilon)\left\|a_{i}-a_{j}\right\| \leq \sqrt{\frac{n}{k}}\left\|P_{V}\left(a_{i}-a_{j}\right)\right\| \leq \frac{1}{1-\epsilon}\left\|a_{i}-a_{j}\right\| \forall 1 \leq i \leq j \leq N\right\}\right) \geq \frac{2}{3}$
Proof. Let $c_{i j}=a_{i}-a_{j}, i>j$, we count $\binom{N}{2}=N(N-1) / 2$ such differences, and $\left\|P_{V} c_{i j}\right\|=$ $\left\|P_{V} a_{i}-P_{V} a_{j}\right\|$.

The set of subspaces V for which $\sqrt{\frac{n}{k}}\left\|P_{V} c_{i j}\right\| \geq \frac{1}{1-\epsilon}\left\|c_{i j}\right\|$ or $\sqrt{\frac{n}{k}}\left\|P_{V} c_{i j}\right\| \leq(1-\epsilon)\left\|c_{i j}\right\|$ for at least one pair $\{i, j\}, i \neq j$, is the union of all the subspaces for which one specific $c_{i j}$ either contracts too much or too little under the projection P_{V}. There are $N(N-1) / 2$ such pairs, and for each pair there are two possibilities for the norm bound. This means, we have a set which is the union of $N(N-1)$ subsets, each subset with measure at most $\exp \left(-k \epsilon^{2} / 4\right)+\exp \left(-n \epsilon^{2} / 4\right)$. Now by our assumption and the union bound over choices $i, j \in\{1,2, \ldots, N\}, i \neq j$ the union of these sets has measure at most $\frac{1}{3}$. Now taking the complement gives the desired estimate of the measure.
2.3.4 Question. What about infinitely many vectors, i.e. $\operatorname{span}\left\{a_{1}, \ldots, a_{T}\right\}$, for some $T \in \mathbb{N}$? See "restricted isometry property".

Need to choose set of points $Q \subset\left\{x \in \operatorname{span}\left\{a_{1}, \ldots, a_{T}\right\} ;\|x\|=1\right\}$, "sufficiently dense", apply Johnson-Lindenstrauss to Q, combine this with triangle inequality to get estimate for all points.

