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3.2 Concentration of Measure on I,

Define Lipshitz functions as before, then 3 m such that,

pn({z € I 2 f(z) = my}) >

and pn({x € I, : f(x) <my}) >

N~ N~

3.2.1 Theorem. If f : I,, — R is 1-Lipshitz and my is its median then for € > 0,

pal{ € I, < | f(2) = myg] > ev/n}) < 4e™.
Proof. Let,

Ay ={zel,: f(x) >ms}
A_={zxel,: f(zr) <mys}

and
Aj(e)={z eI, d(z, A,) < ey/n}
A (e)={xel, dz,A ) <ey/n}

By Corollary to Talagrand’s Theorem,

—e2

fn(Ay(€) > 1 - >1-2e

fin(A4)
and

(A (€)) = 1 - 267

Now we have for A(e) = A;(e) N A_(e) on which f attains values between m; — e/n and
my + €y/n that,
il A(€) 2 1 — e

by the union bound. O



4 The Martingale Method for the Boolean Cube

4.1.1 Question. Concentration theorem is conveniently formulated with the median. What about
the mean?

4.1.2 Definition. If (X, A, u) is a probability space, with measure v and F a sub-c-algebra of
A, then for f : X — R, A-measurable, h : X — R is a conditional expectation with respect to
F if it is F-measurable and for all A € F,

/A hdy = /A fdy.

4.1.3 Remark. Conditional Expectation exists even for o-finite measure spaces by Radon-Nikodym
Theorem. For finite X, and u({z}) > eforall z € X, F is generated by some partition of X.Then
h is a constant on sets of partition generating F, so for A in this partition, y € A,

/ ha)duta) = [ f@yinto

— Ay /fd,u

—  h(y /f

We abbreviate these local averages by,
= E[f|7]
We also denote E[f] = [ fdpu.

414 Note. 1. E[f] = E[E[f]F]].

2. It i C F5 then,
E[E[fu:szl] = E[f’fl]'

3. If f(z) < g(x) for all x € X then,
E[f|7] < E[g|F]
pointwise on X.

4. If g is F-measurable then,
E[fg|F] = gE[f|F].

4.1.5 Definition. Given a sequence of o-algebras, Fy C Fy C ... C F,, with Fy = {0, X} and
{z} € F, forall x € X, then for f : X — R, f; = E[f|Fi], the sequence fo, f1,... [n is called

a martingale.

We use this to prove concentration results.



4.1.6 Theorem. Let X be a finite probability space and let o-algebras Fy C F; C ...
together with f : X — R define a martingale. If there are dy,ds,...,d, such that,

lfi — ficilloo < d;

for each i and a = E|[f], D = de then for t > 0,

=1

—t2

p{r e X: f(x) za+t}) <eww

and p({re X : f(zx)<a-—-t}) <ezn
As a first step we bound the Laplace Transform.

4.1.7 Lemma. Let f : X — R be of zero mean and bounded by d, that is,

/fd,u:O and |f(z)|<dVzeX
X

Then for A > 0, " "
- 2
/ Mdu < e re ™ < e
¥ 2

Proof. By scaling assume d = 1. Note t — e

—1 and 1, we get the inequality,

M o< e+ (14

when —1 <t < 1.
Now inserting f(z) instead of ¢ and integrating gives,

A Y

+ 2
/e’\fd,ug%—l—()geA2
X

The last step holds by Taylor expansion.

Proof. (of the theorem)

C Fn

is convex. So by interpolating linearly between

]

2
We only need to show the first inequality, u({x € X : f(z) > a+t}) < e2p for all f because

the second one follows by replacing f — —f, a — —a.
By Laplace Transform method,

Wz e X fla)—azt)) <e™ / Ay
X



Now we can insert,
n

f=a=fo—Ffo=> (fi—fir).

=0

Denoting ¢, = f; — fi_1,

229
/e)‘(fa)du:/ e =1 dpu
X X

= EleMeM .. e
= Eo[Er[... B[ e’ . eM]]

We note for 1 < k <mn,
BBy .. By q[e?9 e . )] = EBy[EL. .. By _o[e? e’ ... er-1 Blero]]]]
and recall, |gx(z)| < dj, for all z, as well as,

Ey_1lgr]) = Elfe|l Fr-1] = Elfe-1|Fe-1] = fo-1 — frm1 = 0.

2242

di
So by applying the lemma to each block in partition Ej_;[e**] < e 2", This implies,

EO [El[ .. Ek,1[6A91 6)\g2 c. BAgk]H
2242
e T Eo[Er]. .. By_sle? e . M 1]]]
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This gives,
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Ele?Mrere2 | eMn] <

Now choosing A = £, we have,

p{z e X:fl@)—a=t}) < e [ MUdy
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