High-Dimensional Measures and Geometry Lecture Notes from Feb 2, 2010

taken by Anando Sen

3.2 Concentration of Measure on I_n

Define Lipshitz functions as before, then $\exists m_f$ such that,

$$\mu_n(\{x \in I_n : f(x) \ge m_f\}) \ge \frac{1}{2}$$

and $\mu_n(\{x \in I_n : f(x) \le m_f\}) \ge \frac{1}{2}$

3.2.1 Theorem. If $f: I_n \to \mathbb{R}$ is 1-Lipshitz and m_f is its median then for $\epsilon > 0$,

$$\mu_n(\{x \in I_n : |f(x) - m_f| \ge \epsilon \sqrt{n}\}) \le 4e^{-\epsilon^2}.$$

Proof. Let,

$$A_{+} = \{x \in I_{n} : f(x) \ge m_{f}\}$$

$$A_{-} = \{x \in I_{n} : f(x) \le m_{f}\}$$
and
$$A_{+}(\epsilon) = \{x \in I_{n} : d(x, A_{+}) \le \epsilon \sqrt{n}\}$$

$$A_{-}(\epsilon) = \{x \in I_{n} : d(x, A_{-}) \le \epsilon \sqrt{n}\}$$

By Corollary to Talagrand's Theorem,

and

$$\mu_n(A_+(\epsilon)) \ge 1 - \frac{e^{-\epsilon^2}}{\mu_n(A_+)} \ge 1 - 2e^{-\epsilon^2}$$
$$\mu_n(A_-(\epsilon)) \ge 1 - 2e^{-\epsilon^2}$$

Now we have for $A(\epsilon) = A_+(\epsilon) \cap A_-(\epsilon)$ on which f attains values between $m_f - \epsilon \sqrt{n}$ and $m_f + \epsilon \sqrt{n}$ that,

$$\mu_n(A(\epsilon)) \ge 1 - 4e^{\epsilon^2}$$

by the union bound.

4 The Martingale Method for the Boolean Cube

4.1.1 Question. Concentration theorem is conveniently formulated with the median. What about the mean?

4.1.2 Definition. If (X, \mathcal{A}, μ) is a probability space, with measure μ and \mathcal{F} a sub- σ -algebra of \mathcal{A} , then for $f: X \to \mathbb{R}$, \mathcal{A} -measurable, $h: X \to \mathbb{R}$ is a conditional expectation with respect to \mathcal{F} if it is \mathcal{F} -measurable and for all $A \in \mathcal{F}$,

$$\int_A h d\mu = \int_A f d\mu.$$

4.1.3 Remark. Conditional Expectation exists even for σ -finite measure spaces by Radon-Nikodym Theorem. For finite X, and $\mu(\{x\}) > \epsilon$ for all $x \in X$, \mathcal{F} is generated by some partition of X. Then h is a constant on sets of partition generating \mathcal{F} , so for A in this partition, $y \in A$,

$$\int_{A} h(x)d\mu(x) = \int_{A} f(x)d\mu(x)$$
$$\implies h(y)\mu(A) = \int_{A} f(x)d\mu(x)$$
$$\implies h(y) = \frac{1}{\mu(A)} \int_{A} f(x)d\mu(x)$$

We abbreviate these local averages by,

$$h = E[f|\mathcal{F}]$$

We also denote $E[f] = \int_X f d\mu$.

- 4.1.4 Note. 1. $E[f] = E[E[f|\mathcal{F}]].$
 - 2. If $\mathcal{F}_1 \subseteq \mathcal{F}_2$ then,

$$E[E[f|\mathcal{F}_2]|\mathcal{F}_1] = E[f|\mathcal{F}_1].$$

3. If $f(x) \leq g(x)$ for all $x \in X$ then,

$$E[f|\mathcal{F}] \le E[g|\mathcal{F}]$$

pointwise on X.

4. If g is \mathcal{F} -measurable then,

$$E[fg|\mathcal{F}] = gE[f|\mathcal{F}].$$

4.1.5 Definition. Given a sequence of σ -algebras, $\mathcal{F}_0 \subseteq \mathcal{F}_1 \subseteq \ldots \subseteq \mathcal{F}_n$, with $\mathcal{F}_0 = \{\emptyset, X\}$ and $\{x\} \in \mathcal{F}_n$ for all $x \in X$, then for $f : X \to \mathbb{R}$, $f_i = E[f|\mathcal{F}_i]$, the sequence f_0, f_1, \ldots, f_n is called a martingale.

We use this to prove concentration results.

4.1.6 Theorem. Let X be a finite probability space and let σ -algebras $\mathcal{F}_0 \subseteq \mathcal{F}_1 \subseteq \ldots \subseteq \mathcal{F}_n$ together with $f: X \to \mathbb{R}$ define a martingale. If there are d_1, d_2, \ldots, d_n such that,

$$\|f_i - f_{i-1}\|_{\infty} \le d_i$$

for each i and a = E[f], $D = \sum_{i=1}^{n} d_i^2$, then for $t \ge 0$,

$$\mu(\{x \in X : f(x) \ge a + t\}) \le e^{\frac{2D}{2D}}$$

and
$$\mu(\{x \in X : f(x) \le a - t\}) \le e^{\frac{-t^2}{2D}}$$

As a first step we bound the Laplace Transform.

4.1.7 Lemma. Let $f: X \to \mathbb{R}$ be of zero mean and bounded by d, that is,

$$\int_X f d\mu = 0 \quad and \quad |f(x)| \le d \; \forall \; x \in X$$

Then for $\lambda \geq 0$,

$$\int_X e^{\lambda f} d\mu \le \frac{e^{\lambda d} + e^{-\lambda d}}{2} \le e^{\frac{\lambda d^2}{2}}$$

Proof. By scaling assume d = 1. Note $t \to e^{\lambda t}$ is convex. So by interpolating linearly between -1 and 1, we get the inequality,

$$e^{\lambda t} \leq e^{-\lambda} + \frac{e^{\lambda} - e^{-\lambda}}{2}(t+1)$$
$$= \frac{e^{\lambda} + e^{-\lambda}}{2} + \frac{e^{\lambda} + e^{-\lambda}}{2}t$$

when $-1 \le t \le 1$. Now inserting f(x) instead of t and integrating gives,

$$\int_X e^{\lambda f} d\mu \le \frac{e^{\lambda} + e^{-\lambda}}{2} + 0 \le e^{\frac{\lambda^2}{2}}$$

The last step holds by Taylor expansion.

Proof. (of the theorem)

We only need to show the first inequality, $\mu(\{x \in X : f(x) \ge a + t\}) \le e^{\frac{-t^2}{2D}}$ for all f because the second one follows by replacing $f \mapsto -f$, $a \mapsto -a$. By Laplace Transform method,

$$\mu(\{x \in X : f(x) - a \ge t\}) \le e^{-\lambda t} \int_X e^{\lambda(f-a)} d\mu$$

Now we can insert,

$$f - a = f_n - f_0 = \sum_{i=0}^n (f_i - f_{i-1}).$$

Denoting $g_i = f_i - f_{i-1}$,

$$\int_{X} e^{\lambda(f-a)} d\mu = \int_{X} e^{\lambda \sum_{i=1}^{n} g_{i}} d\mu$$
$$= E[e^{\lambda g_{1}} e^{\lambda g_{2}} \dots e^{\lambda g_{n}}]$$
$$= E_{0}[E_{1}[\dots E_{n-1}[e^{\lambda g_{1}} e^{\lambda g_{2}} \dots e^{\lambda g_{n}}]]]$$
with $E_{k}[h] \equiv E[h|\mathcal{F}_{k}]$

We note for $1 \le k \le n$,

$$E_0[E_1[\dots E_{k-1}[e^{\lambda g_1}e^{\lambda g_2}\dots e^{\lambda g_k}]]] = E_0[E_1[\dots E_{k-2}[e^{\lambda g_1}e^{\lambda g_2}\dots e^{\lambda g_{k-1}}E[e^{\lambda g_k}]]]]$$

and recall, $|g_k(x)| \leq d_k$ for all x, as well as,

$$E_{k-1}[g_k] = E[f_k | \mathcal{F}_{k-1}] - E[f_{k-1} | \mathcal{F}_{k-1}] = f_{k-1} - f_{k-1} = 0.$$

So by applying the lemma to each block in partition $E_{k-1}[e^{\lambda g_k}] \leq e^{\frac{\lambda^2 d_k^2}{2}}$. This implies,

$$E_0[E_1[\dots E_{k-1}[e^{\lambda g_1}e^{\lambda g_2}\dots e^{\lambda g_k}]]]$$

$$\leq e^{\frac{\lambda^2 d_k^2}{2}}E_0[E_1[\dots E_{k-2}[e^{\lambda g_1}e^{\lambda g_2}\dots e^{\lambda g_{k-1}}]]]$$

$$\vdots$$

$$e^{\frac{\lambda^2}{2}}\sum_{i=1}^k d_i^2$$

This gives,

$$E[e^{\lambda g_1}e^{\lambda g_2}\dots e^{\lambda g_n}] \le e^{\frac{\lambda^2}{2}\sum_{i=1}^k d_i^2} = e^{\frac{\lambda^2 D}{2}}$$

Now choosing $\lambda = \frac{t}{D}$, we have,

$$\mu(\{x \in X : f(x) - a \ge t\}) \le e^{-\lambda t} \int_X e^{\lambda(f-a)} d\mu$$
$$\le e^{\frac{-t^2}{D}} e^{\frac{t^2}{2D}}$$
$$= e^{\frac{-t^2}{2D}}.$$

 -	-	-	-	