High-Dimensional Measures and Geometry Lecture Notes from Feb 2, 2010

taken by Anando Sen

3.2 Concentration of Measure on I_{n}

Define Lipshitz functions as before, then $\exists m_{f}$ such that,

$$
\begin{aligned}
\mu_{n}\left(\left\{x \in I_{n}: f(x) \geq m_{f}\right\}\right) & \geq \frac{1}{2} \\
\text { and } \quad \mu_{n}\left(\left\{x \in I_{n}: f(x) \leq m_{f}\right\}\right) & \geq \frac{1}{2}
\end{aligned}
$$

3.2.1 Theorem. If $f: I_{n} \rightarrow \mathbb{R}$ is 1-Lipshitz and m_{f} is its median then for $\epsilon>0$,

$$
\mu_{n}\left(\left\{x \in I_{n}:\left|f(x)-m_{f}\right| \geq \epsilon \sqrt{n}\right\}\right) \leq 4 e^{-\epsilon^{2}}
$$

Proof. Let,

$$
\begin{aligned}
& A_{+}=\left\{x \in I_{n}: f(x) \geq m_{f}\right\} \\
& A_{-}=\left\{x \in I_{n}: f(x) \leq m_{f}\right\}
\end{aligned}
$$

and

$$
\begin{aligned}
& A_{+}(\epsilon)=\left\{x \in I_{n}: d\left(x, A_{+}\right) \leq \epsilon \sqrt{n}\right\} \\
& A_{-}(\epsilon)=\left\{x \in I_{n}: d\left(x, A_{-}\right) \leq \epsilon \sqrt{n}\right\}
\end{aligned}
$$

By Corollary to Talagrand's Theorem,

$$
\mu_{n}\left(A_{+}(\epsilon)\right) \geq 1-\frac{e^{-\epsilon^{2}}}{\mu_{n}\left(A_{+}\right)} \geq 1-2 e^{-\epsilon^{2}}
$$

and

$$
\mu_{n}\left(A_{-}(\epsilon)\right) \geq 1-2 e^{-\epsilon^{2}}
$$

Now we have for $A(\epsilon)=A_{+}(\epsilon) \cap A_{-}(\epsilon)$ on which f attains values between $m_{f}-\epsilon \sqrt{n}$ and $m_{f}+\epsilon \sqrt{n}$ that,

$$
\mu_{n}(A(\epsilon)) \geq 1-4 e^{\epsilon^{2}}
$$

by the union bound.

4 The Martingale Method for the Boolean Cube

4.1.1 Question. Concentration theorem is conveniently formulated with the median. What about the mean?
4.1.2 Definition. If (X, \mathcal{A}, μ) is a probability space, with measure μ and \mathcal{F} a sub- σ-algebra of \mathcal{A}, then for $f: X \rightarrow \mathbb{R}$, \mathcal{A}-measurable, $h: X \rightarrow \mathbb{R}$ is a conditional expectation with respect to \mathcal{F} if it is \mathcal{F}-measurable and for all $A \in \mathcal{F}$,

$$
\int_{A} h d \mu=\int_{A} f d \mu
$$

4.1.3 Remark. Conditional Expectation exists even for σ-finite measure spaces by Radon-Nikodym Theorem. For finite X, and $\mu(\{x\})>\epsilon$ for all $x \in X, \mathcal{F}$ is generated by some partition of X. Then h is a constant on sets of partition generating \mathcal{F}, so for A in this partition, $y \in A$,

$$
\begin{aligned}
& \int_{A} h(x) d \mu(x)=\int_{A} f(x) d \mu(x) \\
\Longrightarrow & h(y) \mu(A)=\int_{A} f(x) d \mu(x) \\
\Longrightarrow & h(y)=\frac{1}{\mu(A)} \int_{A} f(x) d \mu(x)
\end{aligned}
$$

We abbreviate these local averages by,

$$
h=E[f \mid \mathcal{F}]
$$

We also denote $E[f]=\int_{X} f d \mu$.
4.1.4 Note.

1. $E[f]=E[E[f \mid \mathcal{F}]]$.
2. If $\mathcal{F}_{1} \subseteq \mathcal{F}_{2}$ then,

$$
E\left[E\left[f \mid \mathcal{F}_{2}\right] \mid \mathcal{F}_{1}\right]=E\left[f \mid \mathcal{F}_{1}\right] .
$$

3. If $f(x) \leq g(x)$ for all $x \in X$ then,

$$
E[f \mid \mathcal{F}] \leq E[g \mid \mathcal{F}]
$$

pointwise on X.
4. If g is \mathcal{F}-measurable then,

$$
E[f g \mid \mathcal{F}]=g E[f \mid \mathcal{F}]
$$

4.1.5 Definition. Given a sequence of σ-algebras, $\mathcal{F}_{0} \subseteq \mathcal{F}_{1} \subseteq \ldots \subseteq \mathcal{F}_{n}$, with $\mathcal{F}_{0}=\{\emptyset, X\}$ and $\{x\} \in \mathcal{F}_{n}$ for all $x \in X$, then for $f: X \rightarrow \mathbb{R}, f_{i}=E\left[f \mid \mathcal{F}_{i}\right]$, the sequence $f_{0}, f_{1}, \ldots f_{n}$ is called a martingale.

We use this to prove concentration results.
4.1.6 Theorem. Let X be a finite probability space and let σ-algebras $\mathcal{F}_{0} \subseteq \mathcal{F}_{1} \subseteq \ldots \subseteq \mathcal{F}_{n}$ together with $f: X \rightarrow \mathbb{R}$ define a martingale. If there are $d_{1}, d_{2}, \ldots, d_{n}$ such that,

$$
\left\|f_{i}-f_{i-1}\right\|_{\infty} \leq d_{i}
$$

for each i and $a=E[f], D=\sum_{i=1}^{n} d_{i}^{2}$, then for $t \geq 0$,

$$
\begin{aligned}
& \mu(\{x \in X: f(x) \geq a+t\}) \leq e^{\frac{-t^{2}}{2 D}} \\
& \text { and } \quad \mu(\{x \in X: f(x) \leq a-t\}) \leq e^{\frac{-t^{2}}{2 D}}
\end{aligned}
$$

As a first step we bound the Laplace Transform.
4.1.7 Lemma. Let $f: X \rightarrow \mathbb{R}$ be of zero mean and bounded by d, that is,

$$
\int_{X} f d \mu=0 \quad \text { and } \quad|f(x)| \leq d \forall x \in X
$$

Then for $\lambda \geq 0$,

$$
\int_{X} e^{\lambda f} d \mu \leq \frac{e^{\lambda d}+e^{-\lambda d}}{2} \leq e^{\frac{\lambda d^{2}}{2}}
$$

Proof. By scaling assume $d=1$. Note $t \rightarrow e^{\lambda t}$ is convex. So by interpolating linearly between -1 and 1 , we get the inequality,

$$
\begin{aligned}
e^{\lambda t} & \leq e^{-\lambda}+\frac{e^{\lambda}-e^{-\lambda}}{2}(t+1) \\
& =\frac{e^{\lambda}+e^{-\lambda}}{2}+\frac{e^{\lambda}+e^{-\lambda}}{2} t
\end{aligned}
$$

when $-1 \leq t \leq 1$.
Now inserting $f(x)$ instead of t and integrating gives,

$$
\int_{X} e^{\lambda f} d \mu \leq \frac{e^{\lambda}+e^{-\lambda}}{2}+0 \leq e^{\frac{\lambda^{2}}{2}}
$$

The last step holds by Taylor expansion.

Proof. (of the theorem)
We only need to show the first inequality, $\mu(\{x \in X: f(x) \geq a+t\}) \leq e^{\frac{-t^{2}}{2 D}}$ for all f because the second one follows by replacing $f \mapsto-f, a \mapsto-a$.
By Laplace Transform method,

$$
\mu(\{x \in X: f(x)-a \geq t\}) \leq e^{-\lambda t} \int_{X} e^{\lambda(f-a)} d \mu
$$

Now we can insert,

$$
f-a=f_{n}-f_{0}=\sum_{i=0}^{n}\left(f_{i}-f_{i-1}\right) .
$$

Denoting $g_{i}=f_{i}-f_{i-1}$,

$$
\begin{aligned}
& \int_{X} e^{\lambda(f-a)} d \mu=\int_{X} e^{\lambda \sum_{i=1}^{n} g_{i}} d \mu \\
= & E\left[e^{\lambda g_{1}} e^{\lambda g_{2}} \ldots e^{\lambda g_{n}}\right] \\
= & E_{0}\left[E _ { 1 } \left[\ldots E _ { n - 1 } \left[e^{\lambda g_{1}} e^{\lambda g_{2}} \ldots e^{\left.\left.\left.\lambda g_{n}\right]\right]\right]}\right.\right.\right.
\end{aligned}
$$

with $E_{k}[h] \equiv E\left[h \mid \mathcal{F}_{k}\right]$
We note for $1 \leq k \leq n$,

$$
E_{0}\left[E_{1}\left[\ldots E_{k-1}\left[e^{\lambda g_{1}} e^{\lambda g_{2}} \ldots e^{\lambda g_{k}}\right]\right]\right]=E_{0}\left[E_{1}\left[\ldots E_{k-2}\left[e^{\lambda g_{1}} e^{\lambda g_{2}} \ldots e^{\lambda g_{k-1}} E\left[e^{\lambda g_{k}}\right]\right]\right]\right]
$$

and recall, $\left|g_{k}(x)\right| \leq d_{k}$ for all x, as well as,

$$
E_{k-1}\left[g_{k}\right]=E\left[f_{k} \mid \mathcal{F}_{k-1}\right]-E\left[f_{k-1} \mid \mathcal{F}_{k-1}\right]=f_{k-1}-f_{k-1}=0
$$

So by applying the lemma to each block in partition $E_{k-1}\left[e^{\lambda g_{k}}\right] \leq e^{\frac{\lambda^{2} d_{k}^{2}}{2}}$. This implies,

$$
\begin{aligned}
& E_{0}\left[E_{1}\left[\ldots E_{k-1}\left[e^{\lambda g_{1}} e^{\lambda g_{2}} \ldots e^{\lambda g_{k}}\right]\right]\right] \\
\leq & e^{\frac{\lambda^{2} d_{k}^{2}}{2}} E_{0}\left[E_{1}\left[\ldots E_{k-2}\left[e^{\lambda g_{1}} e^{\lambda g_{2}} \ldots e^{\lambda g_{k-1}}\right]\right]\right] \\
\vdots & \\
\leq & e^{\frac{\lambda^{2}}{2}} \sum_{i=1}^{k} d_{i}^{2}
\end{aligned}
$$

This gives,

$$
E\left[e^{\lambda g_{1}} e^{\lambda g_{2}} \ldots e^{\lambda g_{n}}\right] \leq e^{\frac{\lambda^{2}}{2} \sum_{i=1}^{k} d_{i}^{2}}=e^{\frac{\lambda^{2} D}{2}}
$$

Now choosing $\lambda=\frac{t}{D}$, we have,

$$
\begin{aligned}
\mu(\{x \in X: f(x)-a \geq t\}) & \leq e^{-\lambda t} \int_{X} e^{\lambda(f-a)} d \mu \\
& \leq e^{\frac{-t^{2}}{D}} e^{\frac{t^{2}}{2 D}} \\
& =e^{\frac{-t^{2}}{2 D}}
\end{aligned}
$$

