High-Dimensional Measures and Geometry Lecture Notes from Feb 4, 2010

taken by Anando Sen

We apply the martingale method to the boolean cube.
4.1.1 Theorem. Let $f: I_{n} \rightarrow \mathbb{R}$ be 1-Lipshitz, $a_{f}=\int_{I_{n}} f d \mu_{n}$. Then for all $t \geq 0$,

$$
\begin{aligned}
& \mu_{n}\left(\left\{x \in I_{n}: f(x) \geq a_{f}+t\right\}\right) \leq e^{\frac{-2 t^{2}}{n}} \\
\text { and } \quad & \mu_{n}\left(\left\{x \in I_{n}: f(x) \leq a_{f}-t\right\}\right) \leq e^{\frac{-2 t^{2}}{n}}
\end{aligned}
$$

Proof. Take $\mathcal{F}_{0}=\left\{\emptyset, I_{n}\right\}, \mathcal{F}_{n}$ be the maximal σ-algebra and $\mathcal{F}_{1}=\left\{\emptyset, I_{n}^{1}, I_{n}^{0}, I_{n}\right\}$ and proceed by subdividing $I_{n}^{1}, I_{n}^{0} \cong I_{n-1}$.

A function f is measurable with respect to \mathcal{F}_{k} if it depends on the last k coordinates only.
Estimate $\left|f_{n}-f_{n-1}\right|$:
We see that,

$$
f_{n-1}\left(x_{1}^{\prime}, x_{2}, \ldots x_{n}\right)=\frac{1}{2}\left(f_{n}\left(0, x_{2}, \ldots, x_{n}\right)+f_{n}\left(1, x_{2}, \ldots, x_{n}\right)\right)
$$

By Lipshitz continuity $\left|f_{n}\left(0, x_{2}, \ldots, x_{n}\right)-f_{n}\left(1, x_{2}, \ldots, x_{n}\right)\right| \leq 1$. So we have,

$$
\left|f_{n-1}(x)-f_{n}(x)\right| \leq \frac{1}{2}=d_{n}
$$

Proceding iteratively, we get

$$
\left\|f_{i}-f_{i-1}\right\|_{\infty} \leq \frac{1}{2}=d_{i}
$$

Now the theorem gives desired estimate. Rescaling $t=\epsilon \sqrt{n}$ gives,

$$
\mu_{n}\left(\left\{x \in I_{n}:\left|f(x)-a_{f}\right| \geq \epsilon \sqrt{n}\right\}\right) \leq 2 e^{-2 \epsilon^{2}}
$$

5 Concentration in Product Spaces

5.1 The martingale method on product spaces

Let $X=X_{1} \times X_{2} \ldots X_{n}$ and each X_{i} be equipped with a probability measure μ_{i}. Then X can be equipped with a product measure with measurable sets in a σ-algebra generated by, $A=A_{1} \times A_{2} \ldots A_{n}$, where each A_{i} is measurable in X_{i} and $\mu(A)=\prod_{i=1}^{n} \mu_{i}\left(A_{i}\right)$. Also let $d(x, y)=\left|\left\{i: x_{i} \neq y_{i}\right\}\right|$ denote the Hemming distance between $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ and $y=\left(y_{1}, y_{2}, \ldots, y_{n}\right)$.
5.1.1 Theorem. Let $f: X \rightarrow \mathbb{R}$ be integrable and $d_{1}, d_{2}, \ldots, d_{n}$ be such that $|f(x)-f(y)| \leq d_{i}$ if x and y have $x_{j}=y_{j}$ for all j except $j=i$. Let $a=\int_{X} f d \mu_{i}, D=\sum_{j=1}^{n} d_{j}^{2}$. Then for $t \geq 0$,

$$
\begin{aligned}
& \mu(\{x: f(x) \geq a+t\}) \leq e^{\frac{-t^{2}}{2 D}} \\
& \mu(\{x: f(x) \leq a-t\}) \leq e^{\frac{-t^{2}}{2 D}}
\end{aligned}
$$

Proof. Uses Martingale method.
Let $f_{0}: X \rightarrow\{a\}, f_{n}=f$ and,

$$
f_{i}\left(x_{1}, x_{2}, \ldots, x_{i}, x_{i+1}^{\prime}, x_{i+2}^{\prime} \ldots x_{n}^{\prime}\right)=\int_{X_{i+1} \times \ldots \times X_{n}} f\left(x_{1}, x_{2}, \ldots x_{n}\right) d \mu_{i+1} \ldots d \mu_{n} .
$$

This means for f_{i} we have averaged over $n-i+1$ dimensions. This is a conditional expectation with respect to \mathcal{F}_{i} generated by $A_{1} \times A_{2} \ldots A_{i} \times X_{i+1} \times \ldots X_{n}$ with $A_{j} \subseteq X_{j}$ measurable.

If $g(x)=f_{i}(x)-f_{i-1}(x)$ then, this difference comes from averaging over the i th coordinate and thus,

$$
\left|g_{i}(x)\right|=\left|f_{i}\left(x_{1}^{\prime}, x_{2}^{\prime}, \ldots x_{i}^{\prime}, \ldots, x_{n}^{\prime}\right)-\int f_{i}\left(x_{1}^{\prime}, \ldots, x_{i-1}^{\prime}, x_{i}, x_{i+1}^{\prime}, \ldots x_{n}^{\prime}\right) d \mu_{i}\left(x_{i}\right)\right| \leq d_{i}
$$

for each $1 \leq i \leq n$. Moreover,

$$
\begin{aligned}
E\left[g_{i} \mid \mathcal{F}_{i-1}\right] & =E\left[f_{i}-f_{i-1} \mid \mathcal{F}_{i-1}\right] \\
& =E\left[f_{i} \mid \mathcal{F}_{i-1}\right]-f_{i-1} \\
& =f_{i-1}-f_{i-1}=0
\end{aligned}
$$

So the Martingale method applies verbatim, as before.

5.2 Law of large Numbers

Suppose $h: Y \rightarrow \mathbb{R}$ is integrable and $a=E[h]=\int_{Y} h d \nu$. If we "sample" n copies of h independently and average then how far would

$$
f(y)=\frac{h\left(y_{1}\right)+\ldots+h\left(y_{n}\right)}{n}
$$

typically be from a ?
Let $X_{i}=Y$ and $\mu_{i}=\nu$ and let $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$, then consider

$$
f(x)=\frac{h\left(x_{1}\right)+\ldots+h\left(x_{n}\right)}{n}
$$

Assume $0 \leq h\left(x_{1}\right) \leq d$ for all $x_{1} \in X_{1}$, then changing one coordinate of $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ changes $f(x)$ by at most $\frac{d}{n}$. Thus we can apply the preceding theorem with,

$$
D=\sum_{i=1}^{n}\left(\frac{d}{n}\right)^{n}=\frac{d^{2}}{n}
$$

We conclude that,

$$
\begin{aligned}
\mu_{n}(\{x: f(x) \geq a+t\}) & \leq e^{\frac{-n t^{2}}{2 d^{2}}} \\
\text { and } \quad \mu_{n}(\{x: f(x) \leq a-t\}) & \leq e^{\frac{-n t^{2}}{2 d^{2}}}
\end{aligned}
$$

Choosing $t=\frac{\epsilon d}{\sqrt{n}}$ gives,

$$
\mu_{n}\left(\left\{x:|f(x)-a| \geq \frac{\epsilon d}{\sqrt{n}}\right\}\right) \leq 2 e^{\frac{\epsilon^{2}}{2}}
$$

5.3 Vector Valued Functions

If we have $h_{1}, h_{2}, \ldots, h_{N}$ instead of just one function h, with corresponding averages $a_{1}, a_{2}, \ldots, a_{N}$ and we sample,

$$
f_{i}(x)=\frac{h_{i}\left(x_{1}\right)+\ldots+h_{i}\left(x_{n}\right)}{n}
$$

then which n should we choose to guarentee that each average f_{i} is close to a_{i} on a set of large measure?

Using union bound,

$$
\mu_{n}\left(\left\{x:\left|f_{i}(x)-a_{i}\right| \leq t \forall i\right\}\right) \geq 1-2 N e^{\frac{-n t^{2}}{2 d^{2}}}
$$

Choosing $t=\epsilon d$ gives $1-2 N e^{\frac{-n \epsilon^{2}}{2}}$ on RHS.

