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We apply the martingale method to the boolean cube.

4.1.1 Theorem. Let f : In → R be 1-Lipshitz, af =
∫
In
fdµn. Then for all t ≥ 0,

µn({x ∈ In : f(x) ≥ af + t}) ≤ e
−2t2

n

and µn({x ∈ In : f(x) ≤ af − t}) ≤ e
−2t2

n

Proof. Take F0 = {∅, In}, Fn be the maximal σ-algebra and F1 = {∅, I1
n, I

0
n, In} and proceed

by subdividing I1
n, I

0
n
∼= In−1.

A function f is measurable with respect to Fk if it depends on the last k coordinates only.

Estimate |fn − fn−1|:
We see that,

fn−1(x
′
1, x2, . . . xn) =

1

2
(fn(0, x2, . . . , xn) + fn(1, x2, . . . , xn))

By Lipshitz continuity |fn(0, x2, . . . , xn)− fn(1, x2, . . . , xn)| ≤ 1. So we have,

|fn−1(x)− fn(x)| ≤
1

2
= dn

Proceding iteratively, we get

‖fi − fi−1‖∞ ≤
1

2
= di

Now the theorem gives desired estimate. Rescaling t = ε
√
n gives,

µn({x ∈ In : |f(x)− af | ≥ ε
√
n}) ≤ 2e−2ε2
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5 Concentration in Product Spaces

5.1 The martingale method on product spaces

Let X = X1 × X2 . . . Xn and each Xi be equipped with a probability measure µi. Then X
can be equipped with a product measure with measurable sets in a σ-algebra generated by,

A = A1 × A2 . . . An, where each Ai is measurable in Xi and µ(A) =
n∏
i=1

µi(Ai).Also let

d(x, y) = |{i : xi 6= yi}| denote the Hemming distance between x = (x1, x2, . . . , xn) and
y = (y1, y2, . . . , yn).

5.1.1 Theorem. Let f : X → R be integrable and d1, d2, . . . , dn be such that |f(x)−f(y)| ≤ di

if x and y have xj = yj for all j except j = i. Let a =
∫
X
fdµi, D =

n∑
j=1

d2
j . Then for t ≥ 0,

µ({x : f(x) ≥ a+ t}) ≤ e
−t2
2D

µ({x : f(x) ≤ a− t}) ≤ e
−t2
2D .

Proof. Uses Martingale method.
Let f0 : X → {a}, fn = f and,

fi(x1, x2, . . . , xi, x
′
i+1, x

′
i+2 . . . x

′
n) =

∫
Xi+1×...×Xn

f(x1, x2, . . . xn)dµi+1 . . . dµn.

This means for fi we have averaged over n− i+ 1 dimensions. This is a conditional expectation
with respect to Fi generated by A1 × A2 . . . Ai ×Xi+1 × . . . Xn with Aj ⊆ Xj measurable.

If g(x) = fi(x) − fi−1(x) then, this difference comes from averaging over the ith coordinate
and thus,

|gi(x)| =
∣∣∣∣fi(x′1, x′2, . . . x′i, . . . , x′n)− ∫ fi(x

′
1, . . . , x

′
i−1, xi, x

′
i+1, . . . x

′
n)dµi(xi)

∣∣∣∣ ≤ di

for each 1 ≤ i ≤ n. Moreover,

E[gi|Fi−1] = E[fi − fi−1|Fi−1]

= E[fi|Fi−1]− fi−1

= fi−1 − fi−1 = 0

So the Martingale method applies verbatim, as before.

5.2 Law of large Numbers

Suppose h : Y → R is integrable and a = E[h] =
∫
Y
hdν. If we “sample” n copies of h

independently and average then how far would

f(y) =
h(y1) + . . .+ h(yn)

n
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typically be from a?

Let Xi = Y and µi = ν and let x = (x1, x2, . . . , xn), then consider

f(x) =
h(x1) + . . .+ h(xn)

n

Assume 0 ≤ h(x1) ≤ d for all x1 ∈ X1, then changing one coordinate of (x1, x2, . . . , xn) changes
f(x) by at most d

n
. Thus we can apply the preceding theorem with,

D =
n∑
i=1

(
d

n

)n
=
d2

n

We conclude that,

µn({x : f(x) ≥ a+ t}) ≤ e
−nt2
2d2

and µn({x : f(x) ≤ a− t}) ≤ e
−nt2
2d2

Choosing t = εd√
n

gives,

µn

(
{x : |f(x)− a| ≥ εd√

n
}
)
≤ 2e

ε2

2

5.3 Vector Valued Functions

If we have h1, h2, . . . , hN instead of just one function h, with corresponding averages a1, a2, . . . , aN
and we sample,

fi(x) =
hi(x1) + . . .+ hi(xn)

n

then which n should we choose to guarentee that each average fi is close to ai on a set of large
measure?

Using union bound,

µn({x : |fi(x)− ai| ≤ t ∀i}) ≥ 1− 2Ne
−nt2
2d2

Choosing t = εd gives 1− 2Ne
−nε2

2 on RHS.
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