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5.1.1 Question. Could we have better concentration results for In?

To study this, we first define ”The Hamming Ball”.

5.1.2 Definition. The Hamming ball B(r) of radius r ≥ 0 in In is defined by

B(r) = {x ∈ In : d(x, 0) ≤ r} = {x ∈ In :
n�

i=1

xi ≤ r}.

It has volume (with respect to un-normalized counting measure)

|B(r)| =
�r��

k=0

�
n

k

�
.

We need an asymptotic way to compute the volume of this ball.

5.1.3 Lemma. Let B(r) be as above, and H(t) = −t ln t− (1− t) ln(1− t) for 0 ≤ t ≤ 1. If

0 ≤ λ ≤ 1
2 and Bn = B(λn) ⊂ In, then

1. ln |Bn| ≤ nH(λ) and

2. lim
n→∞

1

n
|Bn| = H(λ)

Proof. For (1), we recall that

1 = [λ + (1− λ)]n

=
n�

k=0

�
n

k

�
λ

k(1− λ)n−k

≥
�λn��

k=0

�
n

k

�
λ

k(1− λ)n−k

If λ ≤ 1
2 , then

λ

1− λ
≤ 1
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and so, we have

λ
k(1− λ)−k ≥ λ

λn(1− λ)λn
.

Thus, we have from above

1 ≥
�

0≤k≤�λn�

�
n

k

�
λ

λn(1− λ)n−λn

= |Bn|e−nH(λ)

⇒ ln |Bn| ≤ nH(λ).

To show (2), we use Stirling’s formula

ln(n!) = n ln n− n + cn ln n, where cn stays bounded.

We use this for binomial co-effiecients in

n
−1 ln |Bn| ≥ n

−1 ln

�
n

m

�
= n

−1[ln(n!)− ln(m!)− ln((n−m)!)] for λn−1 < m ≤ λn, m ∈ Z.

Stirling approximation gives us

n
−1 ln |Bn| ≥ n

−1[n ln n−n−m ln m+m−(n−m) ln(n−m)+(n−m)+Cn(ln n+ln m+ln(n−m))],

where Cn stays bounded.

Now, re-expressing with λn instead of m, at the cost of Cn to c
�
n
, we have

n
−1 ln |Bn| ≥ n

−1[n ln n− λn ln λn− (n− λn) ln(n− λn) + c
�
n
(ln n + ln λn + ln(n− λn))]

= ln n− λ(ln λ + ln n)− (1− λ) (ln n + ln(1− λ)) +
c
�
n

n
(ln n + ln λn + ln(n− λn))

= H(λ) +
c
�
n

n
(ln n + ln λn + ln(n− λn))

This lower bound establishes (2).

5.2 Hamming Ball and Coin Toss

Consider In and µn(the normalized counting measure) on In as before. Let f : In → R,

f(x) =
n�

i=1

xi,

then E[f ] = n

2 and f is 1-Lipschitz. By concentration result for In, for any t ≥ 0, we have

µn({x ∈ In : f(x)− n

2
≤ −t}) ≤ e

−2t
2
/n

.

Letting t = λn, for 0 < λ < 1/2, we obtain

µn({x ∈ In : f(x)− n

2
≤ −λn}) ≤ e

−2λn
.
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We compare this with our more precise estimate based on the volume of Bn.

If n is even, n = 2m and λn ∈ N, then {x ∈ In : f(x)−m + t ≤ 0} contains all the points with

at most (m− t) non-zero co-ordinates. Thus, we have

µn({x ∈ In : f(x)−m + t ≤ 0}) =
1

2n

m−t�

k=0

�
n

k

�
= 2−n|B(m− t)|.

By bound from above lemma, we have

µn({x ∈ In : f(x)−m + t ≤ 0}) ≤ 2−n
e

nH( 1
2−λ)

.

If λ is small, then we have

H(
1

2
− λ) = −(

1

2
− λ)H(

1

2
− λ)− (

1

2
+ λ)H(

1

2
+ λ)

= −(
1

2
− λ)H(1− 2λ)− (

1

2
+ λ)H(1 + 2λ) + (

1

2
− λ +

1

2
+ λ) ln 2

= ln 2− 2λ2 + higher order terms .

So, we have

µn({x ∈ In : f(x)− n

2
≤ −λn}) ≤ e

−2nλ
2
e

knλ
3
,

where kn is a constant.

For larger values of λ, bounds are different, for example, λ = 1/2 givies us one point set and so

µn({x ∈ In : f(x)− n

2
≤ −λn}) ≤ 1

2n
= e

−n ln 2
<< e

−n/2
.

5.2.4 Question. What about an unfair coin?

Pick 0 < p < 1, and let µn({x}) = p
k(1− p)n−k

with k =
�

n

i=1. Define f(x) = k =
�

n

i=1.

Then, E[f ] = np, f is 1-Lipschitz with respect to the Hamming distance. From martingale

technique, we have

µn({x ∈ In : f(x)− np ≤ −t}) ≤ e
−t

2
/2n

and

µn({x ∈ In : f(x)− np ≥ t}) ≤ e
−t

2
/2n

.

Natural scaling would be t = α
�

np(1− p), but then
t
2

n
= α

2
p(1−p)

2 and as n → ∞, p → 0 and

np = β
2
, we obtain a trivial estimate for t→ αβ.

5.2.5 Question. Is it possible to get a non-trivial bound with exponential e
−α

2
/2

on R. H. S. ?

We will try to address this question in next class.
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