High-Dimensional Measures and Geometry Lecture Notes from Feb 9, 2010
 taken by Pankaj Singh

5.1.1 Question. Could we have better concentration results for I_{n} ?

To study this, we first define "The Hamming Ball".
5.1.2 Definition. The Hamming ball $B(r)$ of radius $r \geq 0$ in I_{n} is defined by

$$
B(r)=\left\{x \in I_{n}: d(x, 0) \leq r\right\}=\left\{x \in I_{n}: \sum_{i=1}^{n} x_{i} \leq r\right\} .
$$

It has volume (with respect to un-normalized counting measure)

$$
|B(r)|=\sum_{k=0}^{\lfloor r\rfloor}\binom{n}{k}
$$

We need an asymptotic way to compute the volume of this ball.
5.1.3 Lemma. Let $B(r)$ be as above, and $H(t)=-t \ln t-(1-t) \ln (1-t)$ for $0 \leq t \leq 1$. If $0 \leq \lambda \leq \frac{1}{2}$ and $B_{n}=B(\lambda n) \subset I_{n}$, then

1. $\ln \left|B_{n}\right| \leq n H(\lambda)$ and
2. $\lim _{n \rightarrow \infty} \frac{1}{n}\left|B_{n}\right|=H(\lambda)$

Proof. For (1), we recall that

$$
\begin{aligned}
1 & =[\lambda+(1-\lambda)]^{n} \\
& =\sum_{k=0}^{n}\binom{n}{k} \lambda^{k}(1-\lambda)^{n-k} \\
& \geq \sum_{k=0}^{\lfloor\lambda n\rfloor}\binom{n}{k} \lambda^{k}(1-\lambda)^{n-k}
\end{aligned}
$$

If $\lambda \leq \frac{1}{2}$, then

$$
\frac{\lambda}{1-\lambda} \leq 1
$$

and so, we have

$$
\lambda^{k}(1-\lambda)^{-k} \geq \lambda^{\lambda n}(1-\lambda)^{\lambda n} .
$$

Thus, we have from above

$$
\begin{gathered}
1 \geq \sum_{0 \leq k \leq\lfloor\lambda n\rfloor}\binom{n}{k} \lambda^{\lambda n}(1-\lambda)^{n-\lambda n} \\
=\left|B_{n}\right| e^{-n H(\lambda)} \\
\Rightarrow \ln \left|B_{n}\right| \leq n H(\lambda)
\end{gathered}
$$

To show (2), we use Stirling's formula

$$
\ln (n!)=n \ln n-n+c_{n} \ln n, \text { where } c_{n} \text { stays bounded. }
$$

We use this for binomial co-effiecients in
$n^{-1} \ln \left|B_{n}\right| \geq n^{-1} \ln \binom{n}{m}=n^{-1}[\ln (n!)-\ln (m!)-\ln ((n-m)!)]$ for $\lambda n-1<m \leq \lambda n, m \in \mathbb{Z}$.
Stirling approximation gives us
$n^{-1} \ln \left|B_{n}\right| \geq n^{-1}\left[n \ln n-n-m \ln m+m-(n-m) \ln (n-m)+(n-m)+C_{n}(\ln n+\ln m+\ln (n-m))\right]$,
where C_{n} stays bounded.
Now, re-expressing with λn instead of m, at the cost of C_{n} to c_{n}^{\prime}, we have

$$
\begin{array}{r}
n^{-1} \ln \left|B_{n}\right| \geq n^{-1}\left[n \ln n-\lambda n \ln \lambda n-(n-\lambda n) \ln (n-\lambda n)+c_{n}^{\prime}(\ln n+\ln \lambda n+\ln (n-\lambda n))\right] \\
=\ln n-\lambda(\ln \lambda+\ln n)-(1-\lambda)(\ln n+\ln (1-\lambda))+\frac{c_{n}^{\prime}}{n}(\ln n+\ln \lambda n+\ln (n-\lambda n)) \\
=H(\lambda)+\frac{c_{n}^{\prime}}{n}(\ln n+\ln \lambda n+\ln (n-\lambda n))
\end{array}
$$

This lower bound establishes (2).

5.2 Hamming Ball and Coin Toss

Consider I_{n} and μ_{n} (the normalized counting measure) on I_{n} as before. Let $f: I_{n} \rightarrow \mathbb{R}$,

$$
f(x)=\sum_{i=1}^{n} x_{i}
$$

then $E[f]=\frac{n}{2}$ and f is 1 -Lipschitz. By concentration result for I_{n}, for any $t \geq 0$, we have

$$
\mu_{n}\left(\left\{x \in I_{n}: f(x)-\frac{n}{2} \leq-t\right\}\right) \leq e^{-2 t^{2} / n}
$$

Letting $t=\lambda n$, for $0<\lambda<1 / 2$, we obtain

$$
\mu_{n}\left(\left\{x \in I_{n}: f(x)-\frac{n}{2} \leq-\lambda n\right\}\right) \leq e^{-2 \lambda n}
$$

We compare this with our more precise estimate based on the volume of B_{n}.
If n is even, $n=2 m$ and $\lambda n \in \mathbb{N}$, then $\left\{x \in I_{n}: f(x)-m+t \leq 0\right\}$ contains all the points with at most $(m-t)$ non-zero co-ordinates. Thus, we have

$$
\mu_{n}\left(\left\{x \in I_{n}: f(x)-m+t \leq 0\right\}\right)=\frac{1}{2^{n}} \sum_{k=0}^{m-t}\binom{n}{k}=2^{-n}|B(m-t)| .
$$

By bound from above lemma, we have

$$
\mu_{n}\left(\left\{x \in I_{n}: f(x)-m+t \leq 0\right\}\right) \leq 2^{-n} e^{n H\left(\frac{1}{2}-\lambda\right)}
$$

If λ is small, then we have

$$
\begin{aligned}
H\left(\frac{1}{2}-\lambda\right) & =-\left(\frac{1}{2}-\lambda\right) H\left(\frac{1}{2}-\lambda\right)-\left(\frac{1}{2}+\lambda\right) H\left(\frac{1}{2}+\lambda\right) \\
& =-\left(\frac{1}{2}-\lambda\right) H(1-2 \lambda)-\left(\frac{1}{2}+\lambda\right) H(1+2 \lambda)+\left(\frac{1}{2}-\lambda+\frac{1}{2}+\lambda\right) \ln 2 \\
& =\ln 2-2 \lambda^{2}+\text { higher order terms }
\end{aligned}
$$

So, we have

$$
\mu_{n}\left(\left\{x \in I_{n}: f(x)-\frac{n}{2} \leq-\lambda n\right\}\right) \leq e^{-2 n \lambda^{2}} e^{k_{n} \lambda^{3}},
$$

where k_{n} is a constant.
For larger values of λ, bounds are different, for example, $\lambda=1 / 2$ givies us one point set and so

$$
\mu_{n}\left(\left\{x \in I_{n}: f(x)-\frac{n}{2} \leq-\lambda n\right\}\right) \leq \frac{1}{2^{n}}=e^{-n \ln 2} \ll e^{-n / 2}
$$

5.2.4 Question. What about an unfair coin?

Pick $0<p<1$, and let $\mu_{n}(\{x\})=p^{k}(1-p)^{n-k}$ with $k=\sum_{i=1}^{n}$. Define $f(x)=k=\sum_{i=1}^{n}$. Then, $E[f]=n p, f$ is 1 -Lipschitz with respect to the Hamming distance. From martingale technique, we have

$$
\mu_{n}\left(\left\{x \in I_{n}: f(x)-n p \leq-t\right\}\right) \leq e^{-t^{2} / 2 n}
$$

and

$$
\mu_{n}\left(\left\{x \in I_{n}: f(x)-n p \geq t\right\}\right) \leq e^{-t^{2} / 2 n}
$$

Natural scaling would be $t=\alpha \sqrt{n p(1-p)}$, but then $\frac{t^{2}}{n}=\frac{\alpha^{2} p(1-p)}{2}$ and as $n \rightarrow \infty, p \rightarrow 0$ and $n p=\beta^{2}$, we obtain a trivial estimate for $t \rightarrow \alpha \beta$.
5.2.5 Question. Is it possible to get a non-trivial bound with exponential $e^{-\alpha^{2} / 2}$ on R. H. S. ? We will try to address this question in next class.

