High-Dimensional Measures and Geometry Lecture Notes from Feb 11, 2010

taken by Nick Maxwell

We will rexamine the application of the martingale technique, with $\{f_0, f_1, ..., f_n\}$.

Let f_k depend only on the first k coordinates, so

$$f_k(x_1, x_2, \dots, x_k, x_{k+1}, \dots, x_n) = \int f_k(x_1, x_2, \dots, x_k, x'_1, x'_2, \dots, x'_{n-k}) d\mu_{n-k}(x') = \int f_k(x_1, x_2, \dots, x_k, x'_1, x'_2, \dots, x'_{n-k}) d\mu_{n-k}(x') = \sum_{i=1}^k x_i + (n-k)p$$

Computing $E_{n-k}[e^{\lambda g_k}]$, $g_k=f_k-f_{k-1}$, instead of estimating, gives, by

$$g_k(x_1, ..., x_n) = f_k(x_1, ..., x_n) - f_{k-1}(x_1, ..., x_n) = x_k - p.$$

that

$$e^{\lambda g_k} = \begin{cases} e^{\lambda(1-p)}, & x_k = 1\\ e^{-\lambda p}, & x_k = 0 \end{cases}$$

which gives,

$$E_{k-1}[e^{\lambda g_k}] = pe^{\lambda(1-p)} + (1-p)e^{-\lambda p}.$$

Iterating as before, n times,

$$E[e^{\lambda(f-a)}] = (pe^{\lambda(1-p)} + (1-p)e^{-\lambda p})^n.$$

Now using the Laplace transform method,

$$\mu_n(\{x \in I_n; f(x) - np \ge t\}) \le e^{-\lambda t} \left(p e^{\lambda(1-p)} + (1-p) e^{-\lambda p} \right)^n.$$

Also, switching $f \to -f$, $np \to -np$ gives

$$\mu_n(\{x \in I_n; f(x) - np \le t\}) \le e^{-\lambda t} \left(p e^{-\lambda(1-p)} + (1-p) e^{\lambda p} \right)^n.$$

Choosing least λ gives,

$$\frac{t}{np(1-p)} = 1 - e^{-\lambda} \Rightarrow \lambda = -\log\left(1 - \frac{t}{np(1-p)}\right).$$

If we now fix $np = \beta^2$, $p \to 0$, and as $t = \alpha \sqrt{np(1-p)} \to \alpha\beta$ and $\lambda \to -\log(a - \frac{\alpha}{\beta})$, inserting this RHS estimate gives that

$$\mu_n(\{x \in I_n; f(x) - np \ge t\}) \le e^{-\lambda t} \left((1-p)e^{\lambda p} + pe^{-\lambda(1-p)} \right)^n.$$

Denote the RHS of this inequality as " $e^{-\lambda t}$ * ". Consider * as $p \to 0$, $n \to \infty$, $p = \beta^2/n$

$$\left(pe^{\lambda(1-p)} + (1-p)e^{-\lambda p}\right)^n = \left(pe^{-\log(1-\alpha/\beta)} + 1 - p + \log(1-\alpha/\beta)p + C_n p^2\right)^n$$

where C_n stays constnt in n. So,

$$* \to e^{\beta^2} (e^{-\log(1-\alpha/\beta)} + \log(1-\alpha/\beta))$$

now, for small α_k and large n,

$$* \approx e^{\beta^2 (\log(1-\alpha/\beta))^2/2} \approx e^{\alpha^2/2}$$

together with $e^{\alpha\beta \lim(1-\alpha/\beta)} \approx e^{-\alpha^2}$. So, RHS is $\approx e^{-\alpha^2/2}$.

5.4 General result in product spaces

5.4.1 Definition. If $g : \mathbb{R} \to \mathbb{R}$ is convex, then define its Legendre transform, g^* , by $g^*(x) = \sup_{\lambda \in \mathbb{R}} \{t\lambda - g(\lambda)\}$. Note, $(t\lambda - g(\lambda))$ is concave. If $g \in C^2(\mathbb{R})$ and g is strictly convex, then this supremum is attained, and λ^* solves $g'(\lambda^*) = t$ uniquely. So, λt and $g(\lambda)$ have same slope at λ^* .

ADD diagram.

Examples: $g(\lambda) = \lambda^2$, $g^*(t) = t^2/4$

We will apply the Legendre transform to the function $L_f(\lambda) = \log \int_X e^{\lambda f} d\mu$. And by Jensen's inequality, and by convexity of exp, $\int_X e^{\lambda f} d\mu \ge \exp(\lambda \int_X f d\mu)$. So, $\log \int_X e^{\lambda f} \ge \log \exp \lambda \int f d\mu = \lambda E[f] \in \mathbb{R}$, which is bounded below in the vicinity of $\lambda = 0$.

Also, assuming existence,

$$L'_f(\lambda) = \frac{E[fe^{\lambda f})}{E(e^{\lambda f}]}$$

and,

$$L''_{f}(\lambda) = \frac{E[f^{2}e^{\lambda f}]E[e^{\lambda f}] - (E[fe^{\lambda f}])^{2}}{(E[e^{\lambda f}])^{2}},$$

using Cauchy-Schwartz,

$$(E[fe^{\lambda f}])^2 \le E[f^2 e^{\lambda f}] E[e^{\lambda f}],$$

so $L''_f(\lambda) \geq 0,$ meaning that L'_f is convex, so it is in the domain of the Legendre transformation.

5.4.2 Theorem (Cramér). Let (X, μ) be a probability space, $f : \mathbb{R} \to \mathbb{R}$ and $t \in \mathbb{R}$ s.t.

1) $E[f] = a_f$ 2) $L_f(\lambda) = \log E[e^{\lambda f}]$ is finite near $\lambda = 0$ 3) $t > a_f$ and $\mu(\{x; f(c) > t\}) > 0$

Let $X_n = \prod_{k=1}^n X$, $\mu_n = \mu \times \mu \times \ldots \times \mu$, and let $h : X_n \to \mathbb{R}$, $h(x) = f(x_1) + f(x_2) + \ldots + f(x_n)$. Then,

$$\lim_{n \to \infty} \frac{1}{n} \log \left(\mu \left(\{ x \in X_n; h(x) > nt \} \right) \right) = -L_f^*(t),$$

where $L_f(\lambda) = \log \int_X e^{\lambda f} d\mu$. Moreover, for all $n \in \mathbb{N}$,

$$\mu(\{x \in X_n; h(x) > nt\}) \le e^{-nL_f^*(t)}.$$

Proof. Only inequality part.

$$\mu_n \left\{ x \in X_n; h(x) > nt \right\} \le e^{-nt\lambda} E[e^{\lambda h}] = \left(e^{-t\lambda} E_{X_1}[e^{\lambda f}] \right)^n = \left(e^{-t\lambda} e^{\log E[e^{\lambda f}]} \right)^n = e^{-n(t\lambda - L_f(\lambda))}$$

Optimizing this with respect to λ gives

$$\mu_n \{ x \in X_n; h(x) > nt \}) \le e^{-nL_f^*(t)}$$