High-Dimensional Measures and Geometry Lecture Notes from Feb 11, 2010

taken by Nick Maxwell

We will rexamine the application of the martingale technique, with $\left\{f_{0}, f_{1}, \ldots, f_{n}\right\}$. Let f_{k} depend only on the first k coordinates, so

$$
\begin{gathered}
f_{k}\left(x_{1}, x_{2}, \ldots, x_{k}, x_{k+1}, \ldots, x_{n}\right)=\int f_{k}\left(x_{1}, x_{2}, \ldots, x_{k}, x_{1}^{\prime}, x_{2}^{\prime}, \ldots, x_{n-k}^{\prime}\right) d \mu_{n-k}\left(x^{\prime}\right)= \\
\int f_{k}\left(x_{1}, x_{2}, \ldots, x_{k}, x_{1}^{\prime}, x_{2}^{\prime}, \ldots, x_{n-k}^{\prime}\right) d \mu_{n-k}\left(x^{\prime}\right)=\sum_{i=1}^{k} x_{i}+(n-k) p
\end{gathered}
$$

Computing $E_{n-k}\left[e^{\lambda g_{k}}\right], g_{k}=f_{k}-f_{k-1}$, instead of estimating, gives, by

$$
g_{k}\left(x_{1}, \ldots, x_{n}\right)=f_{k}\left(x_{1}, \ldots, x_{n}\right)-f_{k-1}\left(x_{1}, \ldots, x_{n}\right)=x_{k}-p .
$$

that

$$
e^{\lambda g_{k}}= \begin{cases}e^{\lambda(1-p)}, & x_{k}=1 \\ e^{-\lambda p}, & x_{k}=0\end{cases}
$$

which gives,

$$
E_{k-1}\left[e^{\lambda g_{k}}\right]=p e^{\lambda(1-p)}+(1-p) e^{-\lambda p}
$$

Iterating as before, n times,

$$
E\left[e^{\lambda(f-a)}\right]=\left(p e^{\lambda(1-p)}+(1-p) e^{-\lambda p}\right)^{n} .
$$

Now using the Laplace transform method,

$$
\mu_{n}\left(\left\{x \in I_{n} ; f(x)-n p \geq t\right\}\right) \leq e^{-\lambda t}\left(p e^{\lambda(1-p)}+(1-p) e^{-\lambda p}\right)^{n} .
$$

Also, switching $f \rightarrow-f, n p \rightarrow-n p$ gives

$$
\mu_{n}\left(\left\{x \in I_{n} ; f(x)-n p \leq t\right\}\right) \leq e^{-\lambda t}\left(p e^{-\lambda(1-p)}+(1-p) e^{\lambda p}\right)^{n}
$$

Choosing least λ gives,

$$
\frac{t}{n p(1-p)}=1-e^{-\lambda} \Rightarrow \lambda=-\log \left(1-\frac{t}{n p(1-p)}\right)
$$

If we now fix $n p=\beta^{2}, p \rightarrow 0$, and as $t=\alpha \sqrt{n p(1-p)} \rightarrow \alpha \beta$ and $\lambda \rightarrow-\log \left(a-\frac{\alpha}{\beta}\right)$, inserting this RHS estimate gives that

$$
\mu_{n}\left(\left\{x \in I_{n} ; f(x)-n p \geq t\right\}\right) \leq e^{-\lambda t}\left((1-p) e^{\lambda p}+p e^{-\lambda(1-p)}\right)^{n}
$$

Denote the RHS of this inequality as " $e^{-\lambda t} *$ ".
Consider $*$ as $p \rightarrow 0, n \rightarrow \infty, p=\beta^{2} / n$

$$
\left(p e^{\lambda(1-p)}+(1-p) e^{-\lambda p}\right)^{n}=\left(p e^{-\log (1-\alpha / \beta)}+1-p+\log (1-\alpha / \beta) p+C_{n} p^{2}\right)^{n}
$$

where C_{n} stays constnt in n. So,

$$
* \rightarrow e^{\beta^{2}}\left(e^{-\log (1-\alpha / \beta)}+\log (1-\alpha / \beta)\right)
$$

now, for small α_{k} and large n,

$$
* \approx e^{\beta^{2}(\log (1-\alpha / \beta))^{2} / 2} \approx e^{\alpha^{2} / 2}
$$

together with $e^{\alpha \beta \lim (1-\alpha / \beta)} \approx e^{-\alpha^{2}}$. So, RHS is $\approx e^{-\alpha^{2} / 2}$.

5.4 General result in product spaces

5.4.1 Definition. If $g: \mathbb{R} \rightarrow \mathbb{R}$ is convex, then define its Legendre transform, g^{*}, by $g^{*}(x)=$ $\sup _{\lambda \in \mathbb{R}}\{t \lambda-g(\lambda)\}$. Note, $(t \lambda-g(\lambda))$ is concave. If $g \in C^{2}(\mathbb{R})$ and g is strictly convex, then this supremum is attained, and λ^{*} solves $g^{\prime}\left(\lambda^{*}\right)=t$ uniquely. So, λt and $g(\lambda)$ have same slope at λ^{*}.
$A D D$ diagram.
Examples: $g(\lambda)=\lambda^{2}, g^{*}(t)=t^{2} / 4$
We will apply the Legendre transform to the function $L_{f}(\lambda)=\log \int_{X} e^{\lambda f} d \mu$. And by Jensen's inequality, and by convexity of $\exp , \int_{X} e^{\lambda f} d \mu \geq \exp \left(\lambda \int_{X} f d \mu\right)$. So, $\log \int_{X} e^{\lambda f} \geq$ $\log \exp \lambda \int f d \mu=\lambda E[f] \in \mathbb{R}$, which is bounded below in the vicinity of $\lambda=0$.

Also, assuming existence,

$$
L_{f}^{\prime}(\lambda)=\frac{E\left[f e^{\lambda f}\right)}{E\left(e^{\lambda f}\right]}
$$

and,

$$
L_{f}^{\prime \prime}(\lambda)=\frac{E\left[f^{2} e^{\lambda f}\right] E\left[e^{\lambda f}\right]-\left(E\left[f e^{\lambda f}\right]\right)^{2}}{\left(E\left[e^{\lambda f}\right]\right)^{2}}
$$

using Cauchy-Schwartz,

$$
\left(E\left[f e^{\lambda f}\right]\right)^{2} \leq E\left[f^{2} e^{\lambda f}\right] E\left[e^{\lambda f}\right]
$$

so $L_{f}^{\prime \prime}(\lambda) \geq 0$, meaning that L_{f}^{\prime} is convex, so it is in the domain of the Legendre transformation.
5.4.2 Theorem (Cramér). Let (X, μ) be a probability space, $f: \mathbb{R} \rightarrow \mathbb{R}$ and $t \in \mathbb{R}$ s.t.

1) $E[f]=a_{f}$
2) $L_{f}(\lambda)=\log E\left[e^{\lambda f}\right]$ is finite near $\lambda=0$
3) $t>a_{f}$ and $\mu(\{x ; f(c)>t\})>0$

Let $X_{n}=\prod_{k=1}^{n} X, \mu_{n}=\mu \times \mu \times \ldots \times \mu$, and let $h: X_{n} \rightarrow \mathbb{R}, h(x)=f\left(x_{1}\right)+f\left(x_{2}\right)+\ldots+$ $f\left(x_{n}\right)$. Then,

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \log \left(\mu\left(\left\{x \in X_{n} ; h(x)>n t\right\}\right)\right)=-L_{f}^{*}(t),
$$

where $L_{f}(\lambda)=\log \int_{X} e^{\lambda f} d \mu$. Moreover, for all $n \in \mathbb{N}$,

$$
\mu\left(\left\{x \in X_{n} ; h(x)>n t\right\}\right) \leq e^{-n L_{f}^{*}(t)}
$$

Proof. Only inequality part.
$\left.\mu_{n}\left\{x \in X_{n} ; h(x)>n t\right\}\right) \leq e^{-n t \lambda} E\left[e^{\lambda h}\right]=\left(e^{-t \lambda} E_{X_{1}}\left[e^{\lambda f}\right]\right)^{n}=\left(e^{-t \lambda} e^{\log E\left[e^{\lambda f}\right]}\right)^{n}=e^{-n\left(t \lambda-L_{f}(\lambda)\right)}$
Optimizing this with respect to λ gives

$$
\left.\mu_{n}\left\{x \in X_{n} ; h(x)>n t\right\}\right) \leq e^{-n L_{f}^{*}(t)}
$$

