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We will rexamine the application of the martingale technique, with {f0, f1, ..., fn}.

Let fk depend only on the first k coordinates, so

fk(x1, x2, ..., xk, xk+1, ..., xn) =

�
fk(x1, x2, ..., xk, x

�
1, x

�
2, ..., x

�
n−k)dµn−k(x

�) =

�
fk(x1, x2, ..., xk, x

�
1, x

�
2, ..., x

�
n−k)dµn−k(x

�) =
k�

i=1

xi + (n− k)p

Computing En−k[eλgk ], gk = fk − fk−1, instead of estimating, gives, by

gk(x1, ..., xn) = fk(x1, ..., xn)− fk−1(x1, ..., xn) = xk − p.

that

eλgk =

�
eλ(1−p), xk = 1
e−λp, xk = 0

which gives,

Ek−1[e
λgk ] = peλ(1−p) + (1− p)e−λp.

Iterating as before, n times,

E[eλ(f−a)] =
�
peλ(1−p) + (1− p)e−λp

�n
.

Now using the Laplace transform method,

µn({x ∈ In; f(x)− np ≥ t}) ≤ e−λt
�
peλ(1−p) + (1− p)e−λp

�n
.

Also, switching f → −f , np→ −np gives

µn({x ∈ In; f(x)− np ≤ t}) ≤ e−λt
�
pe−λ(1−p) + (1− p)eλp

�n
.

Choosing least λ gives,
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t

np(1− p)
= 1− e−λ ⇒ λ = − log

�
1− t

np(1− p)

�
.

If we now fix np = β2, p → 0, and as t = α
�

np(1− p) → αβ and λ → − log(a − α
β ),

inserting this RHS estimate gives that

µn({x ∈ In; f(x)− np ≥ t}) ≤ e−λt
�
(1− p)eλp + pe−λ(1−p)

�n
.

Denote the RHS of this inequality as “ e−λt ∗ ”.
Consider ∗ as p→ 0, n→∞, p = β2/n

�
peλ(1−p) + (1− p)e−λp

�n
=

�
pe− log(1−α/β) + 1− p + log(1− α/β)p + Cn p2

�n
,

where Cn stays constnt in n. So,

∗ → eβ2
(e− log(1−α/β) + log(1− α/β))

now, for small αk and large n,

∗ ≈ eβ2(log(1−α/β))2/2 ≈ eα2/2

together with eαβ lim(1−α/β) ≈ e−α2
. So, RHS is ≈ e−α2/2.

5.4 General result in product spaces

5.4.1 Definition. If g : R → R is convex, then define its Legendre transform, g∗, by g∗(x) =
supλ∈R{tλ − g(λ)}. Note, (tλ − g(λ)) is concave. If g ∈ C2(R) and g is strictly convex, then
this supremum is attained, and λ∗ solves g�(λ∗) = t uniquely. So, λt and g(λ) have same slope
at λ∗.

ADD diagram.

Examples: g(λ) = λ2, g∗(t) = t2/4
We will apply the Legendre transform to the function Lf (λ) = log

�
X eλfdµ. And by

Jensen’s inequality, and by convexity of exp,
�

X eλfdµ ≥ exp
�
λ

�
X fdµ

�
. So, log

�
X eλf ≥

log exp λ
�

fdµ = λE[f ] ∈ R, which is bounded below in the vicinity of λ = 0.
Also, assuming existence,

L�f (λ) =
E[feλf )

E(eλf ]

and,

L��f (λ) =
E[f 2eλf ]E[eλf ]− (E[feλf ])2

(E[eλf ])2
,

using Cauchy-Schwartz,

(E[feλf ])2 ≤ E[f 2eλf ]E[eλf ],

2



so L��f (λ) ≥ 0, meaning that L�f is convex, so it is in the domain of the Legendre transforma-
tion.

5.4.2 Theorem (Cramér). Let (X, µ) be a probability space, f : R → R and t ∈ R s.t.
1) E[f ] = af

2) Lf (λ) = log E[eλf ] is finite near λ = 0
3) t > af and µ({x; f(c) > t}) > 0

Let Xn =
�n

k=1 X, µn = µ× µ× ...× µ, and let h : Xn → R, h(x) = f(x1) + f(x2) + ... +
f(xn). Then,

lim
n→∞

1

n
log (µ ({x ∈ Xn; h(x) > nt})) = −L∗f (t),

where Lf (λ) = log
�

X eλfdµ. Moreover, for all n ∈ N,

µ ({x ∈ Xn; h(x) > nt}) ≤ e−nL∗
f (t).

Proof. Only inequality part.

µn {x ∈ Xn; h(x) > nt}) ≤ e−ntλE[eλh] =
�
e−tλEX1 [e

λf ]
�n

=
�
e−tλelog E[eλf ]

�n
= e−n(tλ−Lf (λ))

Optimizing this with respect to λ gives

µn {x ∈ Xn; h(x) > nt}) ≤ e−nL∗
f (t)
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