High-Dimensional Measures and Geometry Lecture Notes from Feb 16, 2010
 taken by Pankaj Singh

We inspect the general result in the product space with our examples:
Examples: Fair and unfair coins: If $X=\{0,1\}, \mu(\{0\})=1 / 2=\mu(\{1\}), f(x)=x-1 / 2$ for $x \in X$, then

$$
L_{f}(\lambda)=\ln \left(\frac{1}{2} e^{\lambda / 2}+\frac{1}{2} e^{-\lambda / 2}\right)
$$

To compute Legendre transform, maximize $t \lambda-L_{f}(\lambda)$, maximum is assumed at $\lambda^{*}=\ln \left(\frac{1+2 t}{1-2 t}\right)$, $-1 / 2<t \leq 1 / 2$. [By taking derivative w. r. t. λ and equalizing to zero to solve for λ]. Thus, we have

$$
L_{f}^{*}(\lambda)=-\left(\frac{1}{2}+t\right) \ln \left(\frac{1}{1+2 t}\right)-\left(\frac{1}{2}-t\right) \ln \left(\frac{1}{1-2 t}\right)=H\left(\frac{1}{2}-t\right)+\ln 2 .
$$

So, we obtain precisely what we had previously

$$
\mu_{n}(\{x \in X: h(x) \leq n t\}) \leq 2^{-n} e^{n H\left(\frac{1}{2}-t\right)} .
$$

Now, we let $\mu(\{0\})=1-p, \mu(\{1\})=1$ and take $f(x=x-p)$. Then,

$$
L_{f}(\lambda)=\ln \left(p e^{\lambda(1-p)}+(1-p) e^{-p \lambda}\right)=\int e^{\lambda f} d \mu
$$

and $t \lambda-L_{f}(\lambda)$ is maximal at

$$
\lambda^{*}=\ln \left(\frac{(1-p)(t+p)}{p(1-p-t)}\right), \quad-p \leq t<1-p
$$

Thus, we have

$$
\begin{aligned}
L_{f}^{*}(\lambda) & =\ln \left(p e^{(1-p) \ln \left(\frac{(1-p)(t+p)}{p(1-p-t)}\right)}+(1-p) e^{-p \ln \left(\frac{(1-p)(t+p)}{p(1-p-t)}\right)}\right) \\
& =-p \ln \left(\frac{(1-p)(t+p)}{p(1-p-t)}\right)+\ln \left(e^{\ln p+\ln \left(\frac{(1-p)(t+p)}{p(1-p-t)}\right)}+e^{\ln (1-p)}\right) \\
& =-p \ln \left(\frac{(1-p)(t+p)}{p(1-p-t)}\right)+\ln \left(e^{\ln p+\ln \left(\frac{(t+p)}{p(1-p-t)}\right)}\right)+\ln (1-p) \\
& =-p \ln \left(\frac{(1-p)(t+p)}{p(1-p-t)}\right)+\ln \left(\frac{(t+p)}{(1-p-t)}+1\right)+\ln (1-p) \\
& =-p \ln \left(\frac{(1-p)(t+p)}{p(1-p-t)}\right)+\ln \left(\frac{1}{(1-p-t)}\right)+\ln (1-p) .
\end{aligned}
$$

So, we have

$$
\begin{aligned}
L_{f}^{*}(\lambda) & =(t+p) \ln \left(\frac{(1-p)(t+p)}{p(1-p-t)}\right)-\ln \left(\frac{1-p}{1-p-t}\right) \\
& =(t+p) \ln \left(\frac{(t+p)}{p}\right)+(t+p) \ln \left(\frac{1-p}{1-p-t}\right)-\ln \left(\frac{1-p}{1-p-t}\right) \\
& =(t+p) \ln \left(\frac{(t+p)}{p}\right)+(t+p-1) \ln \left(\frac{(1-p)}{1-p-t}\right)
\end{aligned}
$$

Using Varadhan's Lemma, we have, for $h=x_{1}+\cdots+x_{n}-n p, h: X_{n} \rightarrow \mathbb{R}$ that

$$
\begin{align*}
\mu_{n}\left(\left\{x \in X_{n}: h(x) \leq n t\right\}\right) & \leq e^{-n L_{f}^{*}(t)} \\
& =\left[\left(\frac{p}{t+p}\right)^{t+p}\left(\frac{1-p}{1-p-t}\right)^{1-p-t}\right]^{n} \tag{*}
\end{align*}
$$

Setting $t=\frac{\alpha \beta}{n}, p=\frac{\beta^{2}}{n}$, we see that the R. H. S. of $(*)$ becomes

$$
\left(1-\frac{\frac{\alpha \beta}{n}}{\frac{\alpha \beta}{n}+\frac{\beta^{2}}{n}}\right)^{\alpha \beta+\beta^{2}}\left(1+\frac{\frac{\alpha \beta}{n}}{\frac{1-\alpha \beta}{n}-\frac{\beta^{2}}{n}}\right)^{n}\left(1+\frac{\frac{\alpha \beta}{n}}{\frac{1-\alpha \beta}{n}-\frac{\beta^{2}}{n}}\right)^{-\alpha \beta-\beta^{2}}
$$

which approaches to $\left[\left(1-\frac{\alpha \beta}{\alpha \beta+\beta^{2}}\right)^{\alpha \beta+\beta^{2}} e^{\alpha \beta}\right]<1$ as $n \rightarrow \infty$. So, this is a non-trivial asymptotic estimate.
General Insights: If X is a metric space witha probability measure μ such that $A(t)=\{x: d(x, A) \leq t\}$ has measure $\mu(A(t)) \geq 1-e^{-c t^{2}}$ for A with $\mu(A) \geq \frac{1}{2}$, then any 1-Lipschitz function $f: X \rightarrow \mathbb{R}$ concentrates about its median.
To see this, we consider

$$
A_{+}=\left\{x: f(x) \geq m_{f}\right\}
$$

and

$$
A_{-}=\left\{x: f(x) \leq m_{f}\right\}
$$

both of which has measure at least $1 / 2$. Then, we have

$$
\mu\left(A_{+}(t)\right) \geq 1-e^{-c t^{2}}, \mu\left(A_{-}(t)\right) \geq 1-e^{-c t^{2}}
$$

and

$$
\mu\left(A_{+}(t) \cap A_{-}(t)\right) \geq 1-2 e^{-c t^{2}}
$$

This implies that

$$
\mu\left(\left\{s:\left|f(x)-m_{f}\right| \leq t\right\}\right) \geq 1-2 e^{-c t^{2}} .
$$

6 Measure Concentration on High Dimensional Spheres

6.1 Gaussians as Limits of Projected Spherical Measures

We recall that we induced normalized surface measure on S^{n-1} by map $x \rightarrow \frac{x}{\|x\|}$ from γ_{n}. Now, we will induce measure in reverse direction.
6.1.1 Lemma. Non-normalized Riemannian surface measure of S^{n-1} is

$$
\left|S^{n-1}\right|=\frac{2 \pi^{n / 2}}{\Gamma(n / 2)}
$$

with

$$
\Gamma(t)=\int_{0}^{\infty} x^{t-1} e^{-x} d x, \quad t>0 .
$$

Proof. Consider $\rho_{n}(x)=\frac{1}{(2 \pi)^{n / 2}} e^{-\|x\|^{2}}$, the standard Gaussian desity and let $S^{n-1}(r)=\left\{x \in \mathbb{R}^{n}:\|x\|=r\right\}$. Integration in polar co-ordinates gives us

$$
\begin{aligned}
1=\int_{\mathbb{R}^{n}} d \rho_{n} & =\frac{1}{(2 \pi)^{n / 2}} \int_{0}^{\infty}\left|S^{n-1}(r)\right| e^{-r^{2} / 2} d r \\
& =\frac{1}{(2 \pi)^{n / 2}}\left|S^{n-1}(1)\right| \int_{0}^{\infty} r^{n-1} e^{-r^{2} / 2} d r
\end{aligned}
$$

Substituting $t=r^{2} / 2, r d r=d t, r^{n-2}=2^{(n-2) / 2} t^{(n-2) / 2}$, we have

$$
\begin{aligned}
1 & =\frac{1}{(2 \pi)^{n / 2}}\left|S^{n-1}(1)\right| \int_{0}^{\infty} 2^{(n-2) / 2} t^{(n-2) / 2} e^{-t} d t \\
& =\frac{1}{(2 \pi)^{n / 2}}\left|S^{n-1}(1)\right| 2^{(n-2) / 2} \Gamma(n / 2)
\end{aligned}
$$

Solving for $\left|S^{n-1}(1)\right|$, we obtain

$$
\left|S^{n-1}(1)\right|=\frac{(2 \pi)^{n / 2} 2^{(n-2) / 2}}{\Gamma(n / 2)}=\frac{2 \pi^{n / 2}}{\Gamma(n / 2)}
$$

6.1.2 Theorem. Let $\tilde{S}^{n-1} \subset \mathbb{R}^{n}$ be the sphere

$$
\tilde{S}^{n-1}=\left\{x \in \mathbb{R}^{n}:\|x\|=\sqrt{n}\right\}
$$

and $\tilde{\mu}_{n}$ be the rotation invariant probability measure on \tilde{S}^{n-1}. Consider $\Phi: \tilde{S}^{n-1} \rightarrow \mathbb{R}$ be given by $\Phi\left(x_{1}, \cdots, x_{n}\right)=x_{1}$ and let ν_{n} be the induced measure on \mathbb{R}, i. e.,

$$
\nu_{n}(A)=\tilde{\mu}_{n}\left(\Phi^{-1}(A)\right) \text { for Borel sets } A \subset \mathbb{R} .
$$

If γ_{1} is the standard Gaussian measure with density $\rho_{1}(x)=\frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2}$, then for any Borel set $A \subset \mathbb{R}, \lim _{n \rightarrow \infty} \nu_{n}(A)=\gamma_{1}(A)$ and the density of ν_{n} converges uniformly on compact sets to ρ_{1}.

