High-Dimensional Measures and Geometry
Lecture Notes from Mar 2, 2010

taken by Nick Maxwell
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assuming this RHS is finite.

Proof.
F(z,y) = f(z) — f(y)
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with G(z,y,0) = f(2(0)) = f(xcosb,ycosh), and 2/(f) = —xsinf + ycos® = y(#), which
looks like rotation.
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Fix 0, and change variavles, Z; = x; cos + y;sin6, § = —x;sinf 4 y; cos . Then,
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invariant under rotation. Thus by invartiance of measure,
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0.0.2 Corollary. If f : R — R is differentiable, with ||V f|| < 1, and a := E[f], then
+2
mm ({z € R |f(x) —a| <t}) > 127

]



Proof. Let A > 0, use Laplace transform method,

Y ({$7 f(ﬂ?) —a> t}) < ef)\tE [e)\(ffa)} < ef)\te)\27r2/8’
choosing A = 2% gives
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0.0.3 Question. Can we use result for v, and ® = x — ﬁ to obtain concentration about the
mean on spheres?

0.0.4 Idea. Extend differentiable 1-Lipschitz funcitons f : S"!' — R to R", consider g(x) =
|lz1].f (75)- Then g is differentiable when f is (except at 2 = 0).
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As a consequence, if f is differentiable on S™~* and 1-Lipschitx, then g as defined above is
differentiable on R™\ {0}, and is 3-lipschitz.



