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Proof. Consider the extention, g, of f to all of Rn, Let G(x, y) = g(x)− g(y), then

Eµn×µn
[
ef(x)−f(y)

]
= Eγ̃2n

[
eG(x,y)

]
,

γ̃2n with density 1
(2πσ2)n

e
−||x||2

2σ2 , where σ is chosen appropriately, ‘(so sum of random variables

variance = 1)’. Then,

Eγ̃2n
[
eG(x,y)

]
≤ Eγ̃2n

[
e
π2

8 ||∇f ||2σ2
]

so, if ||∇g|| ≤ 3, then we conclude that

Eµn
[
eλf
]
≤ e9π

2(λσ)2/8,

we know that as n→∞, nσ2 → 1. Using the Laplace transform method,

µn
(
{x ∈ Sn−1; f(x) ≥ t}

)
≤ e−λtE

[
eλf
]
≤ e−tλ exp(9π2(λσ)2/8)⇒

µ
(
{x ∈ Sn−1; f(x) ≥ t}

)
≤ e

−2t2

9π2σ2

0.0.1 Question. How much smaller is the set of differentiable functions with ||∇f ||2 ≤ 1 compared
to 1-Lipschitz functions?

0.0.2 Answer. Smaller by “ε”. Prove that any 1-Lipschitx function can be approximated uniformly
by differentiable functions.

0.0.3 Theorem. Let f : Rn → R be 1-Lipschitz, define the localized averages f(x) =
1

|Bε|(x)

∫
Bε|(x) g(y) dy, where Bε|(x) = {y ∈ Rn; ||x − y ≤ ε}. Then f is differentiable, and

for all x ∈ R, |f(x) g(x)| ≤ εn
n+1
≤ ε, and ||∇f || = 1.

Proof. First, check n = 1, then

f(x) =
1

2ε

∫ x+ε

x−ε
g(y) dy
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and by the fundamental theorem of calculus, f is differentiable:

f ′(x) =
1

2ε
[g(x+ ε)− g(x− ε)] , |f ′(x)| = 1

2ε
|g(x+ ε)− g(x− ε)| ≤ 1

2ε
(2ε) = 1.

Moreover,

|f(c)−g(x)| = |g(x)− 1

2ε

∫ x+ε

x−ε
g(y) dy| = | 1

2ε

∫ x+ε

x−ε
(g(x)−g(y)) dy| ≤ 1

2ε

∫ x+ε

x−ε
|g(x)−g(y)| dy =

ε2

2ε
=
ε

2
.

In higher dimensions, similar analysis works. We only prove that Duf(x) = ∇f(c)·u, ||u|| = 1
gives |Duf(x| ≤ 1. Without loss of generality, x = 0, u = (1, 0, ..., 0). Have Duf(0) =
d
dt
f(tu)|t=0. Define the disk Dε = {x ∈ Rn;x ⊥ u, ||x|| ≤ ε}. We compute f(x) in cylindrical

coordinates,

f(tu) =
1

|Bε|

∫
Bε+tu

g(z) dz =
1

|Bε|

∫
Dε

∫ t+
√
ε2−||y||2

t−
√
ε2−||y||2

g(y + se1) ds dy,

where e1 = (1, 0, 0, .), so

d

dt
f(tu)|t=0 =

1

|Bε|

∣∣∣∣∫
Dε

(
g(y +

√
ε2 + ||y||2e1)− g(y +

√
ε2 − ||y||2e1)

)
dy

∣∣∣∣
≤ 1

|Bε|

∫
Dε

2
√
ε2 − ||y||2 dy =

|Bε|
|Bε|

= 1⇒

|Dεf | ≤ 1, ∀ u ∈ Ball(Rn)

.
Moreover,

|f(0)− g(0)| = 1

|Bε|

∣∣∣∣∫
Dε

(g(y)− g(0))

∣∣∣∣ ≤ 1

|Bε|

∫
Dε

|g(x)− g(0)|| dy =
|Sn−1|
|Bε|

∫ ε

0

rn dr

=
εn+1

n+ 1

|Sn−1|
εn|B1|

=
ε

n+ 1

|Sn−1|
|B1|

=
nε

n+ 1

Back to concentration, we now know that f concnetrates on a set of large measure, but
where? Given an ε, and 1-Lipschitz function f : Sn−1 → R, then there exists a subspace
V ⊂ Rn, dim(V ) linear in n, s.t. fV ∩Sn−1 is ε−close to a constant. Note, Sn−1 is (n−1)-sphere,
Sn−1 ∩ V is again a unit sphere of dimension dim(V )− 1.

0.0.4 Theorem. There exists a universal constant, κ > 0, s.t. ε > 0,∀n ∈ N, any 1-Lipschitz
function f : Sn−1 → R there exists a constant, C (e.g. median or averge) and a subspace
V ⊂ Rn, s.t. |f(x)− C| ≤ ε∀x ∈ V ∩ Sn−1 and dim(V ) ≥ κε2

ln(1/ε)
n.
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To prove this, we begin with a lemma about equidistributed points on the sphere

0.0.5 Lemma. Given n-dimensional vector space W , with norm ||·|| and Σ = {x ∈ W ; ||x|| = 1},
then ∀δ > 0,∃S ⊂ Σ with

1) ∀x ∈ S, inf{||y − x||; y ∈ A, y 6= x} ≤ δ
2) |S| ≤ (1 + 2

δ
)n

The same is true for appropriate sets in {x ∈ W ; ||x|| = 1}.
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