High-Dimensional Measures and Geometry Lecture Notes from March 9, 2010

taken by Anando Sen

6.2.1 Lemma. Given an n-dimensional vector space W with norm $\|$.$\| and \Sigma=\{x \in W:\|x\|=$ $1\}$ then for any $\delta>0$ there is $S \subseteq \Sigma$ such that,

1. For all $x \in S$,

$$
\inf _{x \in S, y \neq x}\|y-x\|<\delta
$$

2. We have,

$$
|S| \leq\left(1+\frac{2}{\delta}\right)^{n}
$$

Proof. Pick a set S such that $\|y-x\|>\delta$ for any $x, y \in S$ and assume we cannot add any further points to S without violating this bound. This means any point in Σ is at most at distance δ from S which implies (1).
Now, consider $B\left(y, \frac{\delta}{2}\right)$ for $y \in S$ then $B\left(x, \frac{\delta}{2}\right) \cap B\left(y, \frac{\delta}{2}\right)=\emptyset$ for $x, y \in S$ and,

$$
\begin{aligned}
B\left(x, \frac{\delta}{2}\right) & \subseteq B\left(0,1+\frac{\delta}{2}\right) \\
\Longrightarrow|S|\left|B\left(x, \frac{\delta}{2}\right)\right| & \leq\left|B\left(0,1+\frac{\delta}{2}\right)\right| \\
\Longrightarrow|S|\left(\frac{\delta}{2}\right)^{n}|B(0,1)| & \leq\left(1+\frac{\delta}{2}\right)^{2}|B(0,1)|
\end{aligned}
$$

So we conclude,

$$
|S| \leq\left(1+\frac{2}{\delta}\right)^{n}
$$

which was property (2).
Now we are ready to prove the Theorem.
6.2.2 Theorem. There is a $\kappa>0$ such that, if $\epsilon>0$ then for any n, any 1 Lipshitz $f: S^{n-1} \rightarrow$ $\mathbb{R}, \exists c$ (eg. median, average) and a subspace $V \subseteq \mathbb{R}^{n}$ such that,

$$
|f(x)-c| \leq \epsilon \quad \forall x \in V \cap S^{n-1}
$$

and

$$
\operatorname{dim}(V) \geq \frac{\kappa \epsilon^{2}}{\ln \left(1+\frac{4}{\epsilon}\right)} n
$$

Proof. Pick k-dimensional subspace $A \subseteq \mathbb{R}^{n}$, choose an orthogonal transformation $\mathcal{U} \in \mathcal{O}(n)$ and try $V=\mathcal{U}(A)=\{\mathcal{U} x: x \in A\}$, then we show that a set of \mathcal{U} 's of non-zero measure does it. Choose an $\frac{\epsilon}{2}$-net, $S \subset A \cap S^{n-1}$, with

$$
|S| \leq\left(1+\frac{4}{\epsilon}\right)^{k}=e^{k \ln \left(1+\frac{4}{\epsilon}\right)}
$$

and pick $X=\left\{x \in S^{n-1}:|f(x)-c| \leq \frac{\epsilon}{2}\right\}$. Then

$$
\mu(X) \geq 1-e^{-\alpha n \epsilon^{2}}
$$

for some $\alpha>0$, if c is the median or average of f.
If we can find \mathcal{U} such that $\mathcal{U}(S) \subset X$ then on $V=\mathcal{U}(A), f$ is ϵ-close to c.
This is because if $x \in V \cap S^{n-1}, \exists y \in \mathcal{U}(S)$ and $\|y-x\| \leq \frac{\epsilon}{2}$, (since $\mathcal{U}(S)$ is an $\frac{\epsilon}{2}$-net for $\left.V \cap S^{n-1}\right),|f(y)-c| \leq \frac{\epsilon}{2}$ from $y \in X$. Also from f being 1-Lipshitz and traingle inequality $|f(x)-c| \leq \epsilon$.
To find this, choose a "random" \mathcal{U}.
Let ν_{n} be the Haar probability measure on $\mathcal{O}(n)$. Pick $x \in S$. We have $\{\mathcal{U} x: \mathcal{U} \in \mathcal{O}(n)\}=$ S^{n-1}. Thus,

$$
\nu_{n}(\{\mathcal{U}: \mathcal{U} x \notin X\})=\mu_{n}\left(S^{n-1} \backslash X\right) \leq e^{-\alpha n \epsilon^{2}}
$$

and by union bound,

$$
\nu_{n}\left(\{\mathcal{U}: \mathcal{U} x \notin X \text { for some } x \in S\} \leq|S| e^{-\alpha n \epsilon^{2}} \leq \exp \left(k \ln \left(1+\frac{4}{\epsilon}\right)-\alpha n \epsilon^{2}\right)\right.
$$

Now choosing,

$$
k<\alpha \frac{\epsilon^{2}}{\ln \left(1+\frac{4}{\epsilon}\right)} n
$$

gives upper bound less than one, so desired \mathcal{U} exists.
6.2.3 Corollary. Let P_{v} denote the projection onto $V \in G_{k}\left(\mathbb{R}^{n}\right)$, then for any $\epsilon>0$, any subspace W, $\operatorname{dim} W=k$, there exists $V \in G_{k}\left(\mathbb{R}^{n}\right)$ such that for all $x \in W$, we have,

$$
\left|\|P x\|-\sqrt{\frac{k}{n}}\right|<\epsilon
$$

where $k \leq \frac{\kappa \epsilon^{2}}{\ln \left(1+\frac{4}{\epsilon}\right)} n$
(This implies $\left|\|P x\|^{2}-\frac{k}{n}\right| \leq 2 \epsilon$)
Note that rank of P could not be chosen smaller, otherwise restricting to k-dimensional subspace would not make it invertible.
6.2.4 Lemma. Let P_{v} be the orthogonal projection onto $V \in G_{n}\left(\mathbb{R}^{n}\right)$ then for any $W=$ $\operatorname{span}\left\{e_{j_{1}}, e_{j_{2}}, \ldots e_{j_{k}}\right\}$ (k basis vectors), $k<n$ and $0<\delta<\frac{1}{2}$ then,

$$
\begin{equation*}
(1-\delta)\|x\| \sqrt{\frac{N}{k}}\left\|P_{v} x\right\| \leq \frac{1}{1-\delta}\|x\| \quad \forall x \in V \tag{*}
\end{equation*}
$$

for a set of V 's with measure,

$$
\mu_{N, n}(\{V:(*) \text { holds }\}) \geq 1-2\left(1+\frac{8}{\delta}\right)^{k} e^{-\alpha\left(\frac{\delta}{2}\right)^{2} n}
$$

Proof. We only have to show $(*)$ for $\|x\|=1, x \in W$ and $\min _{y \in S}\|x-y\| \leq \frac{\delta}{4}$ for all $x \in W,\|x\|=$ 1. We know there is such an S with,

$$
|S| \leq\left(1+\frac{8}{\delta}\right)^{k}
$$

Now applying J-L lemma we get a set of V 's with measure as described, such that,

$$
\left(1-\frac{\delta}{2}\right)\|x\| \leq \sqrt{\frac{N}{n}}\left\|P_{v} x\right\| \leq \frac{1}{1-\frac{\delta}{2}}\|x\|
$$

for all $x \in S$. Now let a be the smallest number such that $\sqrt{\frac{N}{n}}\left\|P_{v} x\right\| \leq \frac{1}{1-a}\|x\| \quad \forall x \in W$.
We show $a \leq \delta$. To see this, let $x \in W,\|x\|=1$ and pick $y \in S,\|y-x\| \leq \frac{\delta}{4}$.
Then,

$$
\sqrt{\frac{N}{n}}\left\|P_{v} x\right\| \leq \sqrt{\frac{N}{n}}\left\|P_{v} y\right\|+\sqrt{\frac{N}{n}}\left\|P_{v}(x-y)\right\| \leq \frac{1}{1-\frac{\delta}{2}}+\frac{1}{1-a} \cdot \frac{\delta}{4}
$$

From the definition of a,

$$
\begin{aligned}
& \frac{1}{1-a} \leq \frac{1}{1-\frac{\delta}{2}}+\frac{1}{1-a} \cdot \frac{\delta}{4} \\
\Longrightarrow & \frac{1}{1-a}\left(1-\frac{\delta}{4}\right) \leq \frac{1}{1-\frac{\delta}{2}} \\
\Longrightarrow & \frac{1}{1-a} \leq \frac{1}{1-\frac{\delta}{2}} \frac{1}{1-\frac{\delta}{4}} \leq \frac{1}{\left(1-\frac{\delta}{2}\right)^{2}} \\
\Longrightarrow & 1-a \geq\left(1-\frac{\delta}{2}\right)^{2}=1-\delta+\frac{\delta^{2}}{4} \\
\Longrightarrow \quad & a \leq \delta
\end{aligned}
$$

From the lower inequality,

$$
\begin{aligned}
\sqrt{\frac{N}{n}}\left\|P_{v} x\right\| & \geq \sqrt{\frac{N}{n}}\left\|P_{v} y\right\|-\sqrt{\frac{N}{n}}\left\|P_{v}(x-y)\right\| \geq \frac{1}{1-\frac{\delta}{2}}-\frac{1}{1-a} \cdot \frac{\delta}{4} \\
& \geq 1-\frac{\delta}{2}-\frac{1}{1-a} \cdot \frac{\delta}{4} \\
& \geq 1-\frac{\delta}{2}-\frac{1}{\left(1-\frac{\delta}{2}\right)\left(1-\frac{\delta}{4}\right)} \cdot \frac{\delta}{4}
\end{aligned}
$$

Now using $0<\delta<\frac{1}{2}$,

$$
\frac{1}{1-\frac{\delta}{2}} \cdot \frac{1}{1-\frac{\delta}{4}} \leq \frac{4}{3} \cdot \frac{8}{7}
$$

So,

$$
\begin{aligned}
\sqrt{\frac{N}{n}}\left\|P_{v} x\right\| & \geq 1-\frac{\delta}{2}-\frac{4}{3} \cdot \frac{8}{7} \cdot \frac{\delta}{4} \\
& \geq 1-\frac{\delta}{2}-\frac{\delta}{3} \\
& \geq 1-\delta
\end{aligned}
$$

