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6.2.1 Lemma. Given an n-dimensional vector space W with norm ‖.‖ and Σ = {x ∈ W : ‖x‖ =
1} then for any δ > 0 there is S ⊆ Σ such that,

1. For all x ∈ S,

inf
x∈S,y 6=x

‖y − x‖ < δ

2. We have,

|S| ≤
(

1 +
2

δ

)n
Proof. Pick a set S such that ‖y − x‖ > δ for any x, y ∈ S and assume we cannot add any
further points to S without violating this bound. This means any point in Σ is at most at distance
δ from S which implies (1).
Now, consider B(y, δ

2
) for y ∈ S then B(x, δ

2
) ∩B(y, δ

2
) = ∅ for x, y ∈ S and,

B

(
x,
δ

2

)
⊆ B

(
0, 1 +

δ

2

)
=⇒ |S|

∣∣∣∣B(x, δ2
)∣∣∣∣ ≤ ∣∣∣∣B(0, 1 +

δ

2

)∣∣∣∣
=⇒ |S|

(
δ

2

)n
|B(0, 1)| ≤

(
1 +

δ

2

)2

|B(0, 1)|

So we conclude,

|S| ≤
(

1 +
2

δ

)n
which was property (2).

Now we are ready to prove the Theorem.
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6.2.2 Theorem. There is a κ > 0 such that, if ε > 0 then for any n, any 1−Lipshitz f : Sn−1 →
R,∃c (eg. median, average) and a subspace V ⊆ Rn such that,

|f(x)− c| ≤ ε ∀x ∈ V ∩ Sn−1

and

dim(V ) ≥ κε2

ln
(
1 + 4

ε

)n
Proof. Pick k−dimensional subspace A ⊆ Rn, choose an orthogonal transformation U ∈ O(n)
and try V = U(A) = {Ux : x ∈ A}, then we show that a set of U ’s of non-zero measure does it.
Choose an ε

2
-net, S ⊂ A ∩ Sn−1, with

|S| ≤
(

1 +
4

ε

)k
= ek ln(1+ 4

ε )

and pick X = {x ∈ Sn−1 : |f(x)− c| ≤ ε
2
}. Then

µ(X) ≥ 1− e−αnε2

for some α > 0, if c is the median or average of f .
If we can find U such that U(S) ⊂ X then on V = U(A), f is ε−close to c.
This is because if x ∈ V ∩ Sn−1, ∃y ∈ U(S) and ‖y − x‖ ≤ ε

2
, (since U(S) is an ε

2
−net for

V ∩ Sn−1), |f(y) − c| ≤ ε
2

from y ∈ X. Also from f being 1−Lipshitz and traingle inequality
|f(x)− c| ≤ ε.
To find this, choose a “random” U .
Let νn be the Haar probability measure on O(n). Pick x ∈ S. We have {Ux : U ∈ O(n)} =
Sn−1. Thus,

νn({U : Ux /∈ X}) = µn(Sn−1 \X) ≤ e−αnε
2

and by union bound,

νn({U : Ux /∈ X for some x ∈ S} ≤ |S|e−αnε2 ≤ exp

(
k ln

(
1 +

4

ε

)
− αnε2

)
Now choosing,

k < α
ε2

ln
(
1 + 4

ε

)n
gives upper bound less than one, so desired U exists.

6.2.3 Corollary. Let Pv denote the projection onto V ∈ Gk(Rn), then for any ε > 0, any
subspace W , dimW = k, there exists V ∈ Gk(Rn) such that for all x ∈ W , we have,∣∣∣∣∣‖Px‖ −

√
k

n

∣∣∣∣∣ < ε

where k ≤ κε2

ln(1+ 4
ε )
n
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(This implies
∣∣‖Px‖2 − k

n

∣∣ ≤ 2ε)

Note that rank of P could not be chosen smaller, otherwise restricting to k−dimensional subspace
would not make it invertible.

6.2.4 Lemma. Let Pv be the orthogonal projection onto V ∈ Gn(Rn) then for any W =
span{ej1 , ej2 , . . . ejk} (k basis vectors), k < n and 0 < δ < 1

2
then,

(∗) (1− δ)‖x‖
√
N

k
‖Pvx‖ ≤

1

1− δ
‖x‖ ∀x ∈ V

for a set of V ’s with measure,

µN,n({V : (∗) holds}) ≥ 1− 2

(
1 +

8

δ

)k
e−α(

δ
2)

2
n

Proof. We only have to show (∗) for ‖x‖ = 1, x ∈ W and min
y∈S
‖x−y‖ ≤ δ

4
for all x ∈ W, ‖x‖ =

1. We know there is such an S with,

|S| ≤
(

1 +
8

δ

)k
.

Now applying J-L lemma we get a set of V ’s with measure as described, such that,(
1− δ

2

)
‖x‖ ≤

√
N

n
‖Pvx‖ ≤

1

1− δ
2

‖x‖

for all x ∈ S. Now let a be the smallest number such that
√

N
n
‖Pvx‖ ≤ 1

1−a‖x‖ ∀x ∈ W .

We show a ≤ δ. To see this, let x ∈ W, ‖x‖ = 1 and pick y ∈ S, ‖y − x‖ ≤ δ
4
.

Then, √
N

n
‖Pvx‖ ≤

√
N

n
‖Pvy‖+

√
N

n
‖Pv(x− y)‖ ≤ 1

1− δ
2

+
1

1− a
.
δ

4

From the definition of a,

1

1− a
≤ 1

1− δ
2

+
1

1− a
.
δ

4

=⇒ 1

1− a

(
1− δ

4

)
≤ 1

1− δ
2

=⇒ 1

1− a
≤ 1

1− δ
2

1

1− δ
4

≤ 1(
1− δ

2

)2
=⇒ 1− a ≥

(
1− δ

2

)2

= 1− δ +
δ2

4

=⇒ a ≤ δ
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From the lower inequality,√
N

n
‖Pvx‖ ≥

√
N

n
‖Pvy‖ −

√
N

n
‖Pv(x− y)‖ ≥ 1

1− δ
2

− 1

1− a
.
δ

4

≥ 1− δ

2
− 1

1− a
.
δ

4

≥ 1− δ

2
− 1(

1− δ
2

) (
1− δ

4

) . δ
4

Now using 0 < δ < 1
2
,

1

1− δ
2

.
1

1− δ
4

≤ 4

3
.
8

7

So, √
N

n
‖Pvx‖ ≥ 1− δ

2
− 4

3
.
8

7
.
δ

4

≥ 1− δ

2
− δ

3
≥ 1− δ
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