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6.2.1 Theorem. Let n,N, 0 < δ < 1
2

be given. For V ∈ Gn(RN) we denote by Pv the orthogonal
projection on to V . There exist constants c1, c2 depending on δ such that for k ≤ c1n

ln(Nk )
,

(∗) (1− δ)2‖x‖2 ≤ N

n
‖Pvx‖2 ≤

1

(1− δ)2
‖x‖2

for all x ∈ ∪lWl, Wl = span{ej1(l), ej2(l), . . . ejk(l)} and V can be chosen from a set of measure,

µN,n({V : (∗) holds}) ≥ 1− 2e−c2n

Proof. By lemma, (∗) holds for all x ∈ W with fixed W = span{ej1 , ej2 , . . . ejk}. There are NCk
such subspaces and by Stirling’s bound,

NCk ≤
(
eN

k

)k
Using the union bound, we get that probability for (∗) to fail for atleast one choice of W is
bounded above by,

2

(
eN

k

)k (
1 +

8

δ

)k
e−α(

δ
2)

2
n

= 2e−α(
δ
2)

2
n+k ln(1+ 8

δ )+k ln( eNk )

If c1 is fixed then by choosing k ≤ c1n

ln(Nk )
makes the exponent bounded by −c2n if

c2 ≤ α

(
δ

2

)2

− c1 − c1
ln
(
1 + 8

δ

)
ln
(
N
k

) = α

(
δ

2

)2

− c1

(
1 +

ln
(
1 + 8

δ

)
ln
(
N
k

) )

Thus if c1 is small enough then c2 > 0.
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6.3 Consequences of the Restricted Isometry Principle

6.3.2 Definition. Given an m×n matrix Φ,m < n, s ∈ N then the Restricted Isometry Principle
constant δs is defined to be the smallest number for which,

(1− δs)‖x‖2 ≤ ‖Φx‖2 ≤ (1 + δs)‖x‖2

for all s-sparse x, i.e. x ∈ span{ej1 , ej2 , . . . ejs}.

6.3.3 Problem. Given y = Φx ∈ Rm, recover all s-sparse x from “measurement” y.

Strategy: Minimize ‖x‖1 subject to Φx = y.

6.3.4 Theorem. Given an m × n matrix Φ,m < n, s ∈ N, with Restricted Isometry Principle
constant δ2s <

√
2− 1, then l1-minimization recovers x from y = Φx.

The same strategy also works approximately for noisy data. Given y = Φx + z with ‖z‖ < ε,
minimize ‖x‖1 subject to ‖y − Φx‖ ≤ ε.

6.3.5 Theorem. Given Φ as above with δ2s <
√

2 − 1, ‖z‖ ≤ ε, then there exists c1 > 0 such
that the above l1-minimization gives a solution x∗ for which ‖x∗ − x‖ ≤ c1ε.

6.3.6 Lemma. If x ∈ span{ej1 , ej2 , . . . ejs} and x′ ∈ span{ej′1 , ej′2 , . . . ej′s′} and jl 6= jl′ for any

1 ≤ l ≤ s and 1 ≤ l′ ≤ s′, then |〈Φx,Φx′〉| ≤ δs+s′‖x‖‖x′‖.

Proof. If x, x′ are unit vectors with “disjoint support” as assumed then,

2(1− δs+s′) ≤ ‖Φ(x+ x′)‖2 ≤ 2(1 + δs+s′)

Now using parallelogram identity,

‖Φ(x+ x′)‖ =
1

4

∣∣‖Φ(x+ x′)‖2 + ‖Φ(x− x′)‖2
∣∣ ≤ δs+s′

Proof. (of noisy reconstruction theorem)
Observe that if x∗ is a minimizer to l1-norm in the set {x̃ : ‖Φx̃ − y‖ ≤ ε} then the triangle
inquality gives,

(0) ‖Φ(x∗ − x)‖ ≤ ‖Φx∗ − y‖︸ ︷︷ ︸
≤ε

+‖ y − Φx︸ ︷︷ ︸
z

‖ ≤ 2ε

Now consider x∗ = x + h and show that h is small enough. Let h = h0 + h1 . . ., each hi being
s-sparse and
h0 being supported on the support of x,
h1 being supported on the set of s largest coefficients of h on the complement of the support of
x,
h2 contains the next s largest coefficients,
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...
We bound ‖

∑
i=2

hi‖ by ‖h0 + h1‖. To this end, we note

‖hj‖ ≤
√
s‖hj‖∞ ≤

1√
s
‖hj−1‖1

and thus, ∑
j≥2

‖hj‖ ≤ s−
1
2 (‖h1‖+ ‖h2‖+ . . .)

= s−
1
2‖h− h0‖1

Also,
(1) ‖h− h0 − h1‖ = ‖

∑
j≥2

hj‖ ≤ s−
1
2‖h− h0‖1

Next we bound,

‖x‖1 ≥ ‖x+ h‖1
= ‖x0 + h‖1 + ‖h− h0‖1
≥ ‖x‖1 − ‖h0‖1 + ‖h− h0‖1

This gives,
(2) ‖h− h0‖1 ≤ ‖h0‖1

Applying inequality (1) and (2) with ‖h0‖1 ≤ s
1
2‖h0‖ gives,

‖h− h0 − h1‖ ≤ ‖h0‖
Now we consider ‖h0 + h1‖. We have,

|〈Φ(h0 + h1),Φ(h)〉| ≤ ‖Φ(h0 + h1)‖︸ ︷︷ ︸
≤
√

1+δ2s‖h0+h1‖

‖Φ( h︸︷︷︸
x− x∗︸ ︷︷ ︸
≤2ε

)‖

≤ 2ε
√

1 + δ2s‖h0 + h1‖
Also from lemma,

|〈Φh0,Φhj〉| ≤ δ2s‖h0‖‖hj‖
and the same inequality holds when h0 is replaced by h1. So since h0 and h1 have disjoint support,

‖h0‖+ ‖h1‖ ≤
√

2‖h0 + h1‖
(1− 2δ2s)‖h0 + h1‖2 ≤ ‖Φ(h0 + h1)‖2

= |〈Φ(h0 + h1),Φ( h0 + h1︸ ︷︷ ︸
h+ h0 + h1 − h︸ ︷︷ ︸

−

∑
j≥2

hj

)〉|

≤ ‖h0 + h1‖

(
2ε
√

1 + 2δ2s +
√

2δ2s
∑
j≥2

‖hj‖

)
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Now from,
∑
j≥2

‖hj‖ ≤ s−
1
2‖h− h0‖,

‖h0 + h1‖ ≤ αε+ ρs−
1
2‖h− h0‖

with α = 2
√

1+δ2s
1−2δ2s

and ρ =
√

2δ2s
1−2δ2s

.
This means,

‖h0 + h1‖ ≤ αε+ ρ‖h0 + h1‖

=⇒ ‖h0 + h1‖ ≤
1

1− ρ
αε

Finally,

‖h‖ ≤ ‖h0 + h1‖+ ‖h− h0 − h1‖
≤ 2‖h0 + h1‖

≤ 2
1

1− ρ
α︸ ︷︷ ︸

c

ε
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