# High-Dimensional Measures and Geometry Lecture Notes from March 11, 2010 <br> taken by Anando Sen 

6.2.1 Theorem. Let $n, N, 0<\delta<\frac{1}{2}$ be given. For $V \in G_{n}\left(\mathbb{R}^{N}\right)$ we denote by $P_{v}$ the orthogonal projection on to $V$. There exist constants $c_{1}, c_{2}$ depending on $\delta$ such that for $k \leq \frac{c_{1} n}{\ln \left(\frac{N}{k}\right)}$,

$$
\begin{equation*}
(1-\delta)^{2}\|x\|^{2} \leq \frac{N}{n}\left\|P_{v} x\right\|^{2} \leq \frac{1}{(1-\delta)^{2}}\|x\|^{2} \tag{*}
\end{equation*}
$$

for all $x \in \cup_{l} W_{l}, W_{l}=\operatorname{span}\left\{e_{j_{1}}(l), e_{j_{2}}(l), \ldots e_{j_{k}}(l)\right\}$ and $V$ can be chosen from a set of measure,

$$
\mu_{N, n}(\{V:(*) \text { holds }\}) \geq 1-2 e^{-c_{2} n}
$$

Proof. By lemma, $(*)$ holds for all $x \in W$ with fixed $W=\operatorname{span}\left\{e_{j_{1}}, e_{j_{2}}, \ldots e_{j_{k}}\right\}$. There are ${ }^{N} C_{k}$ such subspaces and by Stirling's bound,

$$
{ }^{N} C_{k} \leq\left(\frac{e N}{k}\right)^{k}
$$

Using the union bound, we get that probability for $(*)$ to fail for atleast one choice of $W$ is bounded above by,

$$
\begin{aligned}
& 2\left(\frac{e N}{k}\right)^{k}\left(1+\frac{8}{\delta}\right)^{k} e^{-\alpha\left(\frac{\delta}{2}\right)^{2} n} \\
= & 2 e^{-\alpha\left(\frac{\delta}{2}\right)^{2} n+k \ln \left(1+\frac{8}{\delta}\right)+k \ln \left(\frac{e N}{k}\right)}
\end{aligned}
$$

If $c_{1}$ is fixed then by choosing $k \leq \frac{c_{1} n}{\ln \left(\frac{N}{k}\right)}$ makes the exponent bounded by $-c_{2} n$ if

$$
c_{2} \leq \alpha\left(\frac{\delta}{2}\right)^{2}-c_{1}-c_{1} \frac{\ln \left(1+\frac{8}{\delta}\right)}{\ln \left(\frac{N}{k}\right)}=\alpha\left(\frac{\delta}{2}\right)^{2}-c_{1}\left(1+\frac{\ln \left(1+\frac{8}{\delta}\right)}{\ln \left(\frac{N}{k}\right)}\right)
$$

Thus if $c_{1}$ is small enough then $c_{2}>0$.

### 6.3 Consequences of the Restricted Isometry Principle

6.3.2 Definition. Given an $m \times n$ matrix $\Phi, m<n, s \in \mathbb{N}$ then the Restricted Isometry Principle constant $\delta_{s}$ is defined to be the smallest number for which,

$$
\left(1-\delta_{s}\right)\|x\|^{2} \leq\|\Phi x\|^{2} \leq\left(1+\delta_{s}\right)\|x\|^{2}
$$

for all $s$-sparse $x$, i.e. $x \in \operatorname{span}\left\{e_{j_{1}}, e_{j_{2}}, \ldots e_{j_{s}}\right\}$.
6.3.3 Problem. Given $y=\Phi x \in \mathbb{R}^{m}$, recover all $s$-sparse $x$ from "measurement" y .

Strategy: Minimize $\|x\|_{1}$ subject to $\Phi x=y$.
6.3.4 Theorem. Given an $m \times n$ matrix $\Phi, m<n, s \in \mathbb{N}$, with Restricted Isometry Principle constant $\delta_{2 s}<\sqrt{2}-1$, then $l_{1}$-minimization recovers $x$ from $y=\Phi x$.

The same strategy also works approximately for noisy data. Given $y=\Phi x+z$ with $\|z\|<\epsilon$, minimize $\|x\|_{1}$ subject to $\|y-\Phi x\| \leq \epsilon$.
6.3.5 Theorem. Given $\Phi$ as above with $\delta_{2 s}<\sqrt{2}-1,\|z\| \leq \epsilon$, then there exists $c_{1}>0$ such that the above $l_{1}$-minimization gives a solution $x^{*}$ for which $\left\|x^{*}-x\right\| \leq c_{1} \epsilon$.
6.3.6 Lemma. If $x \in \operatorname{span}\left\{e_{j_{1}}, e_{j_{2}}, \ldots e_{j_{s}}\right\}$ and $x^{\prime} \in \operatorname{span}\left\{e_{j_{1}^{\prime}}, e_{j_{2}^{\prime}}, \ldots e_{j_{s^{\prime}}}\right\}$ and $j_{l} \neq j_{l^{\prime}}$ for any $1 \leq l \leq s$ and $1 \leq l^{\prime} \leq s^{\prime}$, then $\left|\left\langle\Phi x, \Phi x^{\prime}\right\rangle\right| \leq \delta_{s+s^{\prime}}\|x\|\left\|x^{\prime}\right\|$.

Proof. If $x, x^{\prime}$ are unit vectors with "disjoint support" as assumed then,

$$
2\left(1-\delta_{s+s^{\prime}}\right) \leq\left\|\Phi\left(x+x^{\prime}\right)\right\|^{2} \leq 2\left(1+\delta_{s+s^{\prime}}\right)
$$

Now using parallelogram identity,

$$
\left\|\Phi\left(x+x^{\prime}\right)\right\|=\frac{1}{4}\left|\left\|\Phi\left(x+x^{\prime}\right)\right\|^{2}+\left\|\Phi\left(x-x^{\prime}\right)\right\|^{2}\right| \leq \delta_{s+s^{\prime}}
$$

Proof. (of noisy reconstruction theorem)
Observe that if $x^{*}$ is a minimizer to $l_{1}$-norm in the set $\{\tilde{x}:\|\Phi \tilde{x}-y\| \leq \epsilon\}$ then the triangle inquality gives,

$$
\begin{equation*}
\left\|\Phi\left(x^{*}-x\right)\right\| \leq \underbrace{\left\|\Phi x^{*}-y\right\|}_{\leq \epsilon}+\|\underbrace{y-\Phi x}_{z}\| \leq 2 \epsilon \tag{0}
\end{equation*}
$$

Now consider $x^{*}=x+h$ and show that $h$ is small enough. Let $h=h_{0}+h_{1} \ldots$, each $h_{i}$ being $s$-sparse and
$h_{0}$ being supported on the support of $x$,
$h_{1}$ being supported on the set of $s$ largest coefficients of $h$ on the complement of the support of $x$,
$h_{2}$ contains the next $s$ largest coefficients,
$\vdots$
We bound $\left\|\sum_{i=2} h_{i}\right\|$ by $\left\|h_{0}+h_{1}\right\|$. To this end, we note

$$
\left\|h_{j}\right\| \leq \sqrt{s}\left\|h_{j}\right\|_{\infty} \leq \frac{1}{\sqrt{s}}\left\|h_{j-1}\right\|_{1}
$$

and thus,

$$
\begin{aligned}
\sum_{j \geq 2}\left\|h_{j}\right\| & \leq s^{-\frac{1}{2}}\left(\left\|h_{1}\right\|+\left\|h_{2}\right\|+\ldots\right) \\
& =s^{-\frac{1}{2}}\left\|h-h_{0}\right\|_{1}
\end{aligned}
$$

Also,

$$
\begin{equation*}
\left\|h-h_{0}-h_{1}\right\|=\left\|\sum_{j \geq 2} h_{j}\right\| \leq s^{-\frac{1}{2}}\left\|h-h_{0}\right\|_{1} \tag{1}
\end{equation*}
$$

Next we bound,

$$
\begin{aligned}
\|x\|_{1} & \geq\|x+h\|_{1} \\
& =\left\|x_{0}+h\right\|_{1}+\left\|h-h_{0}\right\|_{1} \\
& \geq\|x\|_{1}-\left\|h_{0}\right\|_{1}+\left\|h-h_{0}\right\|_{1}
\end{aligned}
$$

This gives,

$$
\begin{equation*}
\left\|h-h_{0}\right\|_{1} \leq\left\|h_{0}\right\|_{1} \tag{2}
\end{equation*}
$$

Applying inequality (1) and (2) with $\left\|h_{0}\right\|_{1} \leq s^{\frac{1}{2}}\left\|h_{0}\right\|$ gives,

$$
\left\|h-h_{0}-h_{1}\right\| \leq\left\|h_{0}\right\|
$$

Now we consider $\left\|h_{0}+h_{1}\right\|$. We have,

$$
\begin{aligned}
\left|\left\langle\Phi\left(h_{0}+h_{1}\right), \Phi(h)\right\rangle\right| & \leq \underbrace{\left\|\Phi\left(h_{0}+h_{1}\right)\right\|}_{\leq \sqrt{1+\delta_{2 s}}\left\|h_{0}+h_{1}\right\|} \| \underbrace{x-\frac{h}{x}}_{\underbrace{x-x *}_{\leq 2 \epsilon}}) \| \\
& \leq 2 \epsilon \sqrt{1+\delta_{2 s}}\left\|h_{0}+h_{1}\right\|
\end{aligned}
$$

Also from lemma,

$$
\left|\left\langle\Phi h_{0}, \Phi h_{j}\right\rangle\right| \leq \delta_{2 s}\left\|h_{0}\right\|\left\|h_{j}\right\|
$$

and the same inequality holds when $h_{0}$ is replaced by $h_{1}$. So since $h_{0}$ and $h_{1}$ have disjoint support,

$$
\begin{aligned}
\left\|h_{0}\right\|+\left\|h_{1}\right\| & \leq \sqrt{2}\left\|h_{0}+h_{1}\right\| \\
\left(1-2 \delta_{2 s}\right)\left\|h_{0}+h_{1}\right\|^{2} & \leq\left\|\Phi\left(h_{0}+h_{1}\right)\right\|^{2} \\
& =|\langle\Phi\left(h_{0}+h_{1}\right), \Phi(\underbrace{h+h_{0}+h_{1}-h}_{-\underbrace{}_{j \geq 2} h_{j}})\rangle| \\
& \leq\left\|h_{0}+h_{1}\right\|\left(2 \epsilon \sqrt{1+2 \delta_{2 s}}+\sqrt{2} \delta_{2 s} \sum_{j \geq 2}\left\|h_{j}\right\|\right)
\end{aligned}
$$

Now from, $\sum_{j \geq 2}\left\|h_{j}\right\| \leq s^{-\frac{1}{2}}\left\|h-h_{0}\right\|$,

$$
\left\|h_{0}+h_{1}\right\| \leq \alpha \epsilon+\rho s^{-\frac{1}{2}}\left\|h-h_{0}\right\|
$$

with $\alpha=\frac{2 \sqrt{1+\delta_{2 s}}}{1-2 \delta_{2 s}}$ and $\rho=\frac{\sqrt{2} \delta_{2 s}}{1-2 \delta_{2 s}}$.
This means,

$$
\begin{aligned}
\left\|h_{0}+h_{1}\right\| & \leq \alpha \epsilon+\rho\left\|h_{0}+h_{1}\right\| \\
\Longrightarrow \quad\left\|h_{0}+h_{1}\right\| & \leq \frac{1}{1-\rho} \alpha \epsilon
\end{aligned}
$$

Finally,

$$
\begin{aligned}
\|h\| & \leq\left\|h_{0}+h_{1}\right\|+\left\|h-h_{0}-h_{1}\right\| \\
& \leq 2\left\|h_{0}+h_{1}\right\| \\
& \leq 2 \underbrace{\frac{1}{1-\rho}}_{c} \alpha \epsilon
\end{aligned}
$$

