High-Dimensional Measures and Geometry Lecture Notes from March 23, 2010
 taken by Ali S. Kavruk

8 The Isoperimetric Inequality

We will work on the "predual" to concentration, the isoperimetric inequality, which give us sets that grow least when enlarged by ϵ-neighborhood.

8.1 The Prékopa-Leindler Theorem

8.1.1 Theorem. Let $f, g, h: \mathbb{R}^{n} \rightarrow \mathbb{R}^{+}$be integrable functions and assume for some $\alpha, \beta \geq 0$ with $\alpha+\beta=1$ we have that

$$
h(\alpha x+\beta y) \geq(f(x))^{\alpha}(g(y))^{\beta}
$$

Then

$$
\int_{\mathbb{R}^{n}} h(x) d x \geq\left(\int_{\mathbb{R}^{n}} f(x) d x\right)^{\alpha}\left(\int_{\mathbb{R}^{n}} g(y) d y\right)^{\beta}
$$

Proof. The proof is induction on n. So first consider the case $n=1$. We omit the trivial cases f or g is 0 -a.e. Let c_{1} and c_{2} be the scalars satisfying

$$
c_{1} \int_{\mathbb{R}^{n}} f(x) d x=c_{2} \int_{\mathbb{R}^{n}} g(y) d y=1 .
$$

Note that

$$
c_{1}^{\alpha} c_{2}^{\beta} h(\alpha x+\beta y) \geq\left(c_{1} f(x)\right)^{\alpha}\left(c_{2} g(y)\right)^{\beta} .
$$

So if we only consider the case that f and g is integrate to 1 then show that the integral of h is greater than or equal to 1 then this will be enough and the general case follows from the upper discussion. So we assume this is the case. (Note that we want to prove a statement about probability density). Consider the distribution functions

$$
F(t)=\int_{-\infty}^{t} f(x) d x \quad \text { and } \quad G(t)=\int_{-\infty}^{t} g(x) d x
$$

(Note that F and G are increasing so they have, not necessarily unique, one-sided inverses.) Define $u, v:(0,1) \rightarrow \mathbb{R}$ to be the smallest value satisfying

$$
\int_{-\infty}^{u(t)} f(x) d x=t \quad \text { and } \quad \int_{-\infty}^{v(t)} g(x) d x=t
$$

We note that u and v are almost everywhere differentiable functions. By the chain rule we have that

$$
u^{\prime}(t) f(u(t))=1 \text { a.e. on }\left\{t: u^{\prime}(t) \neq 0\right\}
$$

and

$$
v^{\prime}(t) g(v(t))=1 \text { a.e. on }\left\{t: v^{\prime}(t) \neq 0\right\} .
$$

Now let

$$
w(t)=\alpha u(t)+\beta v(t)
$$

Then $w^{\prime}(t)=\alpha u^{\prime}(t)+\beta v^{\prime}(t) \geq\left(u^{\prime}(t)\right)^{\alpha}\left(v^{\prime}(t)\right)^{\beta}$ because either u^{\prime} or v^{\prime} vanishes or otherwise we have the inequality

$$
e^{\ln \left(\alpha u^{\prime}(t)+\beta v^{\prime}(t)\right)} \geq e^{\alpha \ln \left(u^{\prime}(t)\right)+\beta \ln \left(v^{\prime}(t)\right)} .
$$

So we have

$$
\int_{-\infty}^{\infty} h(x) d x=\int_{0}^{1} h(\underbrace{w(t)}_{\alpha u(t)+\beta v(t)}) w^{\prime}(t) d t \geq \int_{0}^{1}(f(u(t)))^{\alpha}(g(v(t)))^{\beta}\left(u^{\prime}(t)\right)^{\alpha}\left(v^{\prime}(t)\right)^{\beta} d t=1
$$

Hence the proof for $n=1$ is done. Assume the result is true for $n-1$. Choose the hyperplanes $\left\{x \in \mathbb{R}^{n}: x_{n}=\tau\right\} \cong \mathbb{R}^{n-1}$. Consider

$$
f_{1}(\tau)=\int_{\mathbb{R}^{n-1}} f(y, \tau) d y, \quad g_{1}(\tau)=\int_{\mathbb{R}^{n-1}} g(y, \tau) d y \quad \text { and } \quad h_{1}(\tau)=\int_{\mathbb{R}^{n-1}} h(y, \tau) d y
$$

By the assumptions on h, f and g we have that

$$
h\left(\alpha y_{1}+\beta y_{2}, \alpha \tau_{1}+\beta \tau_{2}\right) \geq\left(f\left(y_{1}, \tau_{1}\right)\right)^{\alpha}\left(g\left(y_{2}, \tau_{2}\right)\right)^{\beta}
$$

and if we apply the induction assumption to $h\left(\cdot, \alpha \tau_{1}+\beta \tau_{2}\right), f\left(\cdot, \tau_{1}\right)$ and $g\left(\cdot, \tau_{2}\right)$ we get

$$
h_{1}\left(\alpha \tau_{1}+\beta \tau_{2}\right) \geq\left(f_{1}\left(\tau_{1}\right)\right)^{\alpha}\left(g_{1}\left(\tau_{2}\right)\right)^{\beta} .
$$

Now using the induction start with f_{1}, g_{1} and h_{1} we have

$$
\int_{-\infty}^{\infty} h_{1}(\tau) d \tau \geq\left(\int_{-\infty}^{\infty} f_{1}(\tau) d \tau\right)^{\alpha}\left(\int_{-\infty}^{\infty} g_{1}(\tau) d \tau\right)^{\beta}
$$

By Fubini's Theorem,

$$
\int_{-\infty}^{\infty} h_{1}(\tau) d \tau=\int_{\mathbb{R}^{n}} h(x) d x, \quad \int_{-\infty}^{\infty} f_{1}(\tau) d \tau=\int_{\mathbb{R}^{n}} f(x) d x \quad \text { and } \quad \int_{-\infty}^{\infty} g_{1}(\tau) d \tau=\int_{\mathbb{R}^{n}} g(x) d x
$$

So the proof is done.
As an application of Prékopa-Leindler Theorem we will deduce Brunn-Minkowski inequality.
8.1.2 Definition. A function $p: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is called log-concave if $p \geq 0$ and

$$
p(\alpha x+\beta y) \geq(p(x))^{\alpha}(p(y))^{\beta} .
$$

for all $\alpha, \beta \geq 0$ with $\alpha+\beta=1$ and for all $x, y \in \mathbb{R}^{n}$.
A measure μ is called log-concave if it has a density w.r.t. the the Lebesgue measure which is a log-concave function.
8.1.3 Definition. Let A and B are subsets of \mathbb{R}^{n}. The set

$$
A+B=\{x+y: x \in A, y \in B\}
$$

is called Minkowski sum of A and B.
It is worth mentioning that if A and B are measurable sets then the Minkowski sum $A+B$ need not to be measurable. We can now prove a theorem by Brunn and Minkowski.
8.1.4 Theorem. Let μ be a log-concave measure on \mathbb{R}^{n}. Let A and B are measurable subsets and $\alpha A+\beta B$ is measurable for every $\alpha, \beta \geq 0$ with $\alpha+\beta=1$. Then

$$
\mu(\alpha A+\beta B) \geq(\mu(A))^{\alpha}(\mu(B))^{\beta} \text { for all } \alpha, \beta \geq 0 \text { with } \alpha+\beta=1 .
$$

Proof. Take the density p of μ w.r.t. Lebesgue measure. Define $f=p \chi_{A}, g=p \chi_{B}$ and $h=p \chi_{\alpha A+\beta B}$. Then

$$
h(\alpha x+\beta y)=p(\alpha x+\beta y) \chi_{\alpha A+\beta B} \geq(p(x))^{\alpha}(p(y))^{\beta} \chi_{A}(x) \chi_{B}(y)=(f(x))^{\alpha}(g(y))^{\beta}
$$

for every $\alpha, \beta \geq 0$ with $\alpha+\beta=1$ and $x, y \in \mathbb{R}^{n}$. By observing

$$
\int_{\mathbb{R}^{n}} f(x) d x=\mu(A), \quad \int_{\mathbb{R}^{n}} g(x) d x=\mu(B) \text { and } \int_{\mathbb{R}^{n}} h(x) d x=\mu(\alpha A+\beta B)
$$

and applying Prékopa-Leindler we obtain the result.
8.1.5 Theorem. Let λ be the Lebesgue measure on \mathbb{R}^{n} and let A, B and $A+B$ be measurable sets in \mathbb{R}^{n}. Then

$$
(\lambda(A+B))^{1 / n} \geq(\lambda(A))^{1 / n}+(\lambda(B))^{1 / n}
$$

Proof. We skip the trivial case $\mu(A)$ or $\mu(B)$ is 0 . Pick

$$
\alpha=\frac{(\lambda(A))^{1 / n}}{(\lambda(A))^{1 / n}+(\lambda(B))^{1 / n}} \text { and } \beta=\frac{(\lambda(B))^{1 / n}}{(\lambda(A))^{1 / n}+(\lambda(B))^{1 / n}} .
$$

Then $\alpha, \beta \geq 0$ with $\alpha+\beta=1$. Let $A_{1}=\alpha^{-1} A$ and $B_{1}=\beta^{-1} B$. Then

$$
\lambda\left(A_{1}\right)=\alpha^{-n} \lambda(A)=\left(\lambda(A)^{1 / n}+\lambda(B)^{1 / n}\right)^{n}
$$

and

$$
\lambda\left(B_{1}\right)=\beta^{-n} \lambda(B)=\left(\lambda(A)^{1 / n}+\lambda(B)^{1 / n}\right)^{n} .
$$

Using Brunn-Minkowski gives

$$
\lambda(A+B)=\lambda\left(\alpha A_{1}+\beta B_{1}\right)=\left(\lambda\left(A_{1}\right)\right)^{\alpha}\left(\lambda\left(B_{1}\right)\right)^{\beta}=\left(\lambda(A)^{1 / n}+\lambda(B)^{1 / n}\right)^{n}
$$

