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8 The Isoperimetric Inequality

We will work on the ”predual” to concentration, the isoperimetric inequality, which give us sets
that grow least when enlarged by ε-neighborhood.

8.1 The Prékopa-Leindler Theorem

8.1.1 Theorem. Let f, g, h : Rn → R+ be integrable functions and assume for some α, β ≥ 0
with α + β = 1 we have that

h(αx+ βy) ≥
(
f(x)

)α(
g(y)

)β
.

Then ∫
Rn

h(x)dx ≥
(∫

Rn

f(x)dx

)α(∫
Rn

g(y)dy

)β
Proof. The proof is induction on n. So first consider the case n = 1. We omit the trivial cases
f or g is 0-a.e. Let c1 and c2 be the scalars satisfying

c1

∫
Rn

f(x)dx = c2

∫
Rn

g(y)dy = 1.

Note that
cα1 c

β
2h(αx+ βy) ≥

(
c1f(x)

)α(
c2g(y)

)β
.

So if we only consider the case that f and g is integrate to 1 then show that the integral of
h is greater than or equal to 1 then this will be enough and the general case follows from the
upper discussion. So we assume this is the case. (Note that we want to prove a statement about
probability density). Consider the distribution functions

F (t) =

∫ t

−∞
f(x)dx and G(t) =

∫ t

−∞
g(x)dx.

(Note that F and G are increasing so they have, not necessarily unique, one-sided inverses.)
Define u, v : (0, 1)→ R to be the smallest value satisfying∫ u(t)

−∞
f(x)dx = t and

∫ v(t)

−∞
g(x)dx = t.
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We note that u and v are almost everywhere differentiable functions. By the chain rule we have
that

u′(t)f(u(t)) = 1 a.e. on {t : u′(t) 6= 0}
and

v′(t)g(v(t)) = 1 a.e. on {t : v′(t) 6= 0}.
Now let

w(t) = αu(t) + βv(t)

Then w′(t) = αu′(t) + βv′(t) ≥
(
u′(t)

)α(
v′(t)

)β
because either u′ or v′ vanishes or otherwise

we have the inequality
eln(αu′(t)+βv′(t)) ≥ eα ln(u′(t))+β ln(v′(t)).

So we have∫ ∞
−∞

h(x)dx =

∫ 1

0

h( w(t)︸︷︷︸
αu(t)+βv(t)

)w′(t)dt ≥
∫ 1

0

(
f(u(t))

)α(
g(v(t))

)β(
u′(t)

)α(
v′(t)

)β
dt = 1.

Hence the proof for n = 1 is done. Assume the result is true for n− 1. Choose the hyperplanes
{x ∈ Rn : xn = τ} ∼= Rn−1. Consider

f1(τ) =

∫
Rn−1

f(y, τ)dy, g1(τ) =

∫
Rn−1

g(y, τ)dy and h1(τ) =

∫
Rn−1

h(y, τ)dy.

By the assumptions on h, f and g we have that

h(αy1 + βy2, ατ1 + βτ2) ≥
(
f(y1, τ1)

)α(
g(y2, τ2)

)β
and if we apply the induction assumption to h(·, ατ1 + βτ2), f(·, τ1) and g(·, τ2) we get

h1(ατ1 + βτ2) ≥
(
f1(τ1)

)α(
g1(τ2)

)β
.

Now using the induction start with f1, g1 and h1 we have∫ ∞
−∞

h1(τ)dτ ≥
(∫ ∞
−∞

f1(τ)dτ

)α(∫ ∞
−∞

g1(τ)dτ

)β
.

By Fubini’s Theorem,∫ ∞
−∞

h1(τ)dτ =

∫
Rn

h(x)dx,

∫ ∞
−∞

f1(τ)dτ =

∫
Rn

f(x)dx and

∫ ∞
−∞

g1(τ)dτ =

∫
Rn

g(x)dx.

So the proof is done.

As an application of Prékopa-Leindler Theorem we will deduce Brunn-Minkowski inequality.

8.1.2 Definition. A function p : Rn → R is called log-concave if p ≥ 0 and

p(αx+ βy) ≥
(
p(x)

)α(
p(y)

)β
.

for all α, β ≥ 0 with α + β = 1 and for all x, y ∈ Rn.

A measure µ is called log-concave if it has a density w.r.t. the the Lebesgue measure which
is a log-concave function.
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8.1.3 Definition. Let A and B are subsets of Rn. The set

A+B = {x+ y : x ∈ A, y ∈ B}

is called Minkowski sum of A and B.

It is worth mentioning that if A and B are measurable sets then the Minkowski sum A+B need
not to be measurable. We can now prove a theorem by Brunn and Minkowski.

8.1.4 Theorem. Let µ be a log-concave measure on Rn. Let A and B are measurable subsets
and αA+ βB is measurable for every α, β ≥ 0 with α + β = 1. Then

µ(αA+ βB) ≥
(
µ(A)

)α(
µ(B)

)β
for all α, β ≥ 0 with α + β = 1.

Proof. Take the density p of µ w.r.t. Lebesgue measure. Define f = pχA, g = pχB and
h = pχαA+βB. Then

h(αx+ βy) = p(αx+ βy)χαA+βB ≥
(
p(x)

)α(
p(y)

)β
χA(x)χB(y) =

(
f(x)

)α(
g(y)

)β
for every α, β ≥ 0 with α + β = 1 and x, y ∈ Rn. By observing∫

Rn

f(x)dx = µ(A),

∫
Rn

g(x)dx = µ(B) and

∫
Rn

h(x)dx = µ(αA+ βB)

and applying Prékopa-Leindler we obtain the result.

8.1.5 Theorem. Let λ be the Lebesgue measure on Rn and let A, B and A+B be measurable
sets in Rn. Then (

λ(A+B)
)1/n ≥ (λ(A)

)1/n
+
(
λ(B)

)1/n
.

Proof. We skip the trivial case µ(A) or µ(B) is 0. Pick

α =

(
λ(A)

)1/n(
λ(A)

)1/n
+
(
λ(B)

)1/n and β =

(
λ(B)

)1/n(
λ(A)

)1/n
+
(
λ(B)

)1/n .
Then α, β ≥ 0 with α + β = 1. Let A1 = α−1A and B1 = β−1B. Then

λ(A1) = α−nλ(A) = (λ(A)1/n + λ(B)1/n)n

and
λ(B1) = β−nλ(B) = (λ(A)1/n + λ(B)1/n)n.

Using Brunn-Minkowski gives

λ(A+B) = λ(αA1 + βB1) = (λ(A1))
α(λ(B1))

β = (λ(A)1/n + λ(B)1/n)n.
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