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8.1.6 Remark. Reversing the steps in the proof of the preceeding corollary shows that if µ is a
measure on Rn satisfying

µ(tA) = tnµ(A)

for all measurable A, then if A,B, αA+ βB are measurable for all α, β ≥ 0 with α+ β = 1 and

µ(αA+ βB) =
[
µ(αA)1/n + µ(βB)1/n

]n
,

then
µ(αA+ βB) = µ(A)αµ(B)β.

Now, we use this to derive the isoperimetric inequality.

8.1.7 Definition. For A = Ā ⊂ Rn, ρ ≥ 0, we define

A(ρ) = {x ∈ Rn : d(x,A) ≤ ρ}.

We note that A(ρ) = A+Bρ, where Bρ = {x ∈ Rn : ‖x‖ ≤ ρ}.

8.1.8 Theorem. For a compact set A ⊂ Rn and a closed ball Br of radius r ≥ 0 such that
λ(A) = λ(Br), we have that

λ(A(ρ)) ≥ λ(Br+ρ).

Proof. We use the additive form of Brunn-Minkowski inequality

λ
1
n (A(ρ)) = λ

1
n (A+Bρ)

≥ λ
1
n (A) + λ

1
n (Bρ)

= λ
1
n (Br) + λ

1
n (Bρ)

= rλ
1
n (B1) + ρλ

1
n (B1)

= (r + ρ)λ
1
n (B1)

= λ
1
n (Br+ρ)

The last two inequalities stem from homogeneity λ(Br) = rnλ(B1).

8.1.9 Remark. For “nice” A, lim
ρ↓0

λ(A(ρ))− λ(A)

ρ
is the “surface area”. So the ball has the

smallest surface area for given volume.
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9 Concetration on the Sphere and on Strictly Convex Sur-
faces

9.0.1 Definition. Assume K ⊂ Rn is compact, convex and 0 ∈ K, then we say that K is
strictly convex if for any ε > 0, there exsits δ > 0 such that for all x, y ∈ ∂K, d(x, y) ≥ ε, then
x+ y

2
∈ (1− δ)K. We call this function ε 7→ δ(ε) a modulus of convexity.

9.0.2 Example. The ball B1 = {x ∈ Rn : ‖x‖ ≤ 1} is strictly convex. For any two points
x, y ∈ ∂B with d(x, y) ≥ ε, we have∥∥∥∥x+ y

2

∥∥∥∥2

+

∥∥∥∥x− y2

∥∥∥∥2

= 2

(∥∥∥x
2

∥∥∥2

+
∥∥∥y

2

∥∥∥2
)

= 1

⇒
∥∥∥∥x+ y

2

∥∥∥∥ =

√
1−

∥∥∥∥x− y2

∥∥∥∥2

As

∥∥∥∥x− y2

∥∥∥∥2

≤ ε2

4
, we can choose 1− δ =

√
1− ε2

4
≤ 1− ε2

8
or even larger with δ =

ε2

8
.

Now, we induce a measure µ on the surface ∂K by “projecting”. For A ⊂ ∂K, we say that
A is measurable if the cone segment

cs(A) = {αx : x ∈ A, 0 ≤ α ≤ 1}

is Lebesgue measurable and we define

µ(A) =
λ(cs(A))

λ(cs(K))
.

9.0.3 Example. K = B1, then µ is rotationally invariant and thus µ is the usual normalized
measure on Sn−1.

9.0.4 Remark. In general, the measure µ is not the induced “surface” measure. We claim that
sets of measure 1

2
have neighbourhoods of almost full measure. Here, the distance of neighbours

is inherited from Rn.

9.0.5 Lemma. If A is convex and α, β ≥ 0, then (α + β)A = αA+ βB.

Proof. We note that (α + β)A ⊂ αA+ βB from the definition of Minkowski sum.
Conversely, given x, y ∈ A, then

αx+ βy = (α + β)
α

(α + β)
x+ (α + β)

β

(α + β)
y

= (α + β)

(
α

(α + β)
x+

β

(α + β)
y

)

As
α

(α + β)
x+

β

(α + β)
y ∈ A (using convexity), we conclude that αx+ βy ∈ (α + β)A.
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9.0.6 Theorem. Let K = K̄ convex, compact, 0 ∈ K◦ with a modulus of convixity δ. Let
S = δK and A ⊂ S be measurable such that µ(A) ≥ 1

2
, then for any ε > 0 with δ(ε) ≤ 1

2
,

µ ({x ∈ S : d(x,A) ≥ ε}) ≤ 2 (1− δ(ε))2n ≤ 2e−2nδ(ε).

Proof. Let B = {x ∈ S : d(x,A) ≥ ε}. We recall that x ∈ A, y ∈ B, then we have
x+ y

2
∈

(1 − δ)K. More generally, if x′ ∈ cs(A), y′ ∈ cs(B), the same is true for
x′ + y′

2
. Because

x′ = αx, y′ = βy for x ∈ A, y ∈ B, 0 ≤ α, β ≤ 1 and so

x′ + y′

2
=
αx+ βy

2
.

Assume that α ≥ β and α > 0, then γ = β
α
≤ 1 and

x′ + y′

2
= α

x+ γy

2

= α

(
γ
x+ y

2
+ (1− γ)

x

2

)
= αγ

x+ y

2
+ α(1− γ)

x

2

So
x′ + y′

2
∈ αγ(1 − δ)K + α(1 − γ)(1 − δ)K = α(1 − δ)K ⊂ (1 − δ)K (using the above

Lemma). This implies that
1

2
cs(A) +

1

2
cs(B) ⊂ (1− δ)K

and thus

λ

(
1

2
cs(A) +

1

2
cs(B)

)
≤ (1− δ)nλ(K).

Using Brunn-Minkowski inequality, we obtain

λ

(
1

2
cs(A) +

1

2
cs(B)

)
≥ [λ(cs(A))]

1
2 [λ(cs(B))]

1
2

and

µ(B) =
λ(cs(B))

λ(K)

≤ (1− δ)2n λ(K)

λ(cs(A))

= (1− δ)2n 1

µ(A)

≤ 2(1− δ)2n ≤ 2e−2nδ.

In particular, if K = B1, then

µ ({x ∈ S : d(x,A) ≥ ε}) ≤ 2e−ε
2n/4.
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