High-Dimensional Measures and Geometry Lecture Notes from March 25, 2010
 taken by Pankaj Singh

8.1.6 Remark. Reversing the steps in the proof of the preceeding corollary shows that if μ is a measure on \mathbb{R}^{n} satisfying

$$
\mu(t A)=t^{n} \mu(A)
$$

for all measurable A, then if $A, B, \alpha A+\beta B$ are measurable for all $\alpha, \beta \geq 0$ with $\alpha+\beta=1$ and

$$
\mu(\alpha A+\beta B)=\left[\mu(\alpha A)^{1 / n}+\mu(\beta B)^{1 / n}\right]^{n}
$$

then

$$
\mu(\alpha A+\beta B)=\mu(A)^{\alpha} \mu(B)^{\beta} .
$$

Now, we use this to derive the isoperimetric inequality.
8.1.7 Definition. For $A=\bar{A} \subset \mathbb{R}^{n}, \rho \geq 0$, we define

$$
A(\rho)=\left\{x \in \mathbb{R}^{n}: d(x, A) \leq \rho\right\}
$$

We note that $A(\rho)=A+B_{\rho}$, where $B_{\rho}=\left\{x \in \mathbb{R}^{n}:\|x\| \leq \rho\right\}$.
8.1.8 Theorem. For a compact set $A \subset \mathbb{R}^{n}$ and a closed ball B_{r} of radius $r \geq 0$ such that $\lambda(A)=\lambda\left(B_{r}\right)$, we have that

$$
\lambda(A(\rho)) \geq \lambda\left(B_{r+\rho}\right)
$$

Proof. We use the additive form of Brunn-Minkowski inequality

$$
\begin{aligned}
\lambda^{\frac{1}{n}}(A(\rho)) & =\lambda^{\frac{1}{n}}\left(A+B_{\rho}\right) \\
& \geq \lambda^{\frac{1}{n}}(A)+\lambda^{\frac{1}{n}}\left(B_{\rho}\right) \\
& =\lambda^{\frac{1}{n}}\left(B_{r}\right)+\lambda^{\frac{1}{n}}\left(B_{\rho}\right) \\
& =r \lambda^{\frac{1}{n}}\left(B_{1}\right)+\rho \lambda^{\frac{1}{n}}\left(B_{1}\right) \\
& =(r+\rho) \lambda^{\frac{1}{n}}\left(B_{1}\right) \\
& =\lambda^{\frac{1}{n}}\left(B_{r+\rho}\right)
\end{aligned}
$$

The last two inequalities stem from homogeneity $\lambda\left(B_{r}\right)=r^{n} \lambda\left(B_{1}\right)$.
8.1.9 Remark. For "nice" $A, \lim _{\rho \downarrow 0} \frac{\lambda(A(\rho))-\lambda(A)}{\rho}$ is the "surface area". So the ball has the smallest surface area for given volume.

9 Concetration on the Sphere and on Strictly Convex Surfaces

9.0.1 Definition. Assume $K \subset \mathbb{R}^{n}$ is compact, convex and $0 \in K$, then we say that K is strictly convex if for any $\epsilon>0$, there exsits $\delta>0$ such that for all $x, y \in \partial K, d(x, y) \geq \epsilon$, then $\frac{x+y}{2} \in(1-\delta) K$. We call this function $\epsilon \mapsto \delta(\epsilon)$ a modulus of convexity.
9.0.2 Example. The ball $B_{1}=\left\{x \in \mathbb{R}^{n}:\|x\| \leq 1\right\}$ is strictly convex. For any two points $x, y \in \partial B$ with $d(x, y) \geq \epsilon$, we have

$$
\begin{aligned}
& \left\|\frac{x+y}{2}\right\|^{2}+\left\|\frac{x-y}{2}\right\|^{2}=2\left(\left\|\frac{x}{2}\right\|^{2}+\left\|\frac{y}{2}\right\|^{2}\right)=1 \\
\Rightarrow & \left\|\frac{x+y}{2}\right\|=\sqrt{1-\left\|\frac{x-y}{2}\right\|^{2}}
\end{aligned}
$$

As $\left\|\frac{x-y}{2}\right\|^{2} \leq \frac{\epsilon^{2}}{4}$, we can choose $1-\delta=\sqrt{1-\frac{\epsilon^{2}}{4}} \leq 1-\frac{\epsilon^{2}}{8}$ or even larger with $\delta=\frac{\epsilon^{2}}{8}$.
Now, we induce a measure μ on the surface ∂K by "projecting". For $A \subset \partial K$, we say that A is measurable if the cone segment

$$
c s(A)=\{\alpha x: x \in A, 0 \leq \alpha \leq 1\}
$$

is Lebesgue measurable and we define

$$
\mu(A)=\frac{\lambda(\operatorname{cs}(A))}{\lambda(\operatorname{cs}(K))}
$$

9.0.3 Example. $K=B_{1}$, then μ is rotationally invariant and thus μ is the usual normalized measure on S^{n-1}.
9.0.4 Remark. In general, the measure μ is not the induced "surface" measure. We claim that sets of measure $\frac{1}{2}$ have neighbourhoods of almost full measure. Here, the distance of neighbours is inherited from \mathbb{R}^{n}.
9.0.5 Lemma. If A is convex and $\alpha, \beta \geq 0$, then $(\alpha+\beta) A=\alpha A+\beta B$.

Proof. We note that $(\alpha+\beta) A \subset \alpha A+\beta B$ from the definition of Minkowski sum.
Conversely, given $x, y \in A$, then

$$
\begin{aligned}
\alpha x+\beta y & =(\alpha+\beta) \frac{\alpha}{(\alpha+\beta)} x+(\alpha+\beta) \frac{\beta}{(\alpha+\beta)} y \\
& =(\alpha+\beta)\left(\frac{\alpha}{(\alpha+\beta)} x+\frac{\beta}{(\alpha+\beta)} y\right)
\end{aligned}
$$

As $\frac{\alpha}{(\alpha+\beta)} x+\frac{\beta}{(\alpha+\beta)} y \in A$ (using convexity), we conclude that $\alpha x+\beta y \in(\alpha+\beta) A$.
9.0.6 Theorem. Let $K=\bar{K}$ convex, compact, $0 \in K^{\circ}$ with a modulus of convixity δ. Let $S=\delta K$ and $A \subset S$ be measurable such that $\mu(A) \geq \frac{1}{2}$, then for any $\epsilon>0$ with $\delta(\epsilon) \leq \frac{1}{2}$,

$$
\mu(\{x \in S: d(x, A) \geq \epsilon\}) \leq 2(1-\delta(\epsilon))^{2 n} \leq 2 e^{-2 n \delta(\epsilon)}
$$

Proof. Let $B=\{x \in S: d(x, A) \geq \epsilon\}$. We recall that $x \in A, y \in B$, then we have $\frac{x+y}{2} \in$ $(1-\delta) K$. More generally, if $x^{\prime} \in c s(A), y^{\prime} \in c s(B)$, the same is true for $\frac{x^{\prime}+y^{\prime}}{2}$. Because $x^{\prime}=\alpha x, y^{\prime}=\beta y$ for $x \in A, y \in B, 0 \leq \alpha, \beta \leq 1$ and so

$$
\frac{x^{\prime}+y^{\prime}}{2}=\frac{\alpha x+\beta y}{2} .
$$

Assume that $\alpha \geq \beta$ and $\alpha>0$, then $\gamma=\frac{\beta}{\alpha} \leq 1$ and

$$
\begin{aligned}
\frac{x^{\prime}+y^{\prime}}{2} & =\alpha \frac{x+\gamma y}{2} \\
& =\alpha\left(\gamma \frac{x+y}{2}+(1-\gamma) \frac{x}{2}\right) \\
& =\alpha \gamma \frac{x+y}{2}+\alpha(1-\gamma) \frac{x}{2}
\end{aligned}
$$

So $\frac{x^{\prime}+y^{\prime}}{2} \in \alpha \gamma(1-\delta) K+\alpha(1-\gamma)(1-\delta) K=\alpha(1-\delta) K \subset(1-\delta) K$ (using the above Lemma). This implies that

$$
\frac{1}{2} c s(A)+\frac{1}{2} c s(B) \subset(1-\delta) K
$$

and thus

$$
\lambda\left(\frac{1}{2} c s(A)+\frac{1}{2} c s(B)\right) \leq(1-\delta)^{n} \lambda(K) .
$$

Using Brunn-Minkowski inequality, we obtain

$$
\lambda\left(\frac{1}{2} c s(A)+\frac{1}{2} c s(B)\right) \geq[\lambda(c s(A))]^{\frac{1}{2}}[\lambda(c s(B))]^{\frac{1}{2}}
$$

and

$$
\begin{aligned}
\mu(B) & =\frac{\lambda(c s(B))}{\lambda(K)} \\
& \leq(1-\delta)^{2 n} \frac{\lambda(K)}{\lambda(c s(A))} \\
& =(1-\delta)^{2 n} \frac{1}{\mu(A)} \\
& \leq 2(1-\delta)^{2 n} \leq 2 e^{-2 n \delta}
\end{aligned}
$$

In particular, if $K=B_{1}$, then

$$
\mu(\{x \in S: d(x, A) \geq \epsilon\}) \leq 2 e^{-\epsilon^{2} n / 4} .
$$

