High-Dimensional Measures and Geometry Lecture Notes from March 25, 2010

taken by Pankaj Singh

8.1.6 Remark. Reversing the steps in the proof of the preceeding corollary shows that if μ is a measure on \mathbb{R}^n satisfying

$$\mu(tA) = t^n \mu(A)$$

for all measurable A, then if $A, B, \alpha A + \beta B$ are measurable for all $\alpha, \beta \ge 0$ with $\alpha + \beta = 1$ and

$$\mu(\alpha A + \beta B) = \left[\mu(\alpha A)^{1/n} + \mu(\beta B)^{1/n}\right]^n,$$

then

$$\mu(\alpha A + \beta B) = \mu(A)^{\alpha} \mu(B)^{\beta}.$$

Now, we use this to derive the isoperimetric inequality.

8.1.7 Definition. For $A = \overline{A} \subset \mathbb{R}^n$, $\rho \ge 0$, we define

$$A(\rho) = \{ x \in \mathbb{R}^n : d(x, A) \le \rho \}.$$

We note that $A(\rho) = A + B_{\rho}$, where $B_{\rho} = \{x \in \mathbb{R}^n : ||x|| \le \rho\}$.

8.1.8 Theorem. For a compact set $A \subset \mathbb{R}^n$ and a closed ball B_r of radius $r \ge 0$ such that $\lambda(A) = \lambda(B_r)$, we have that

$$\lambda(A(\rho)) \ge \lambda(B_{r+\rho})$$

Proof. We use the additive form of Brunn-Minkowski inequality

$$\lambda^{\frac{1}{n}}(A(\rho)) = \lambda^{\frac{1}{n}}(A + B_{\rho})$$

$$\geq \lambda^{\frac{1}{n}}(A) + \lambda^{\frac{1}{n}}(B_{\rho})$$

$$= \lambda^{\frac{1}{n}}(B_{r}) + \lambda^{\frac{1}{n}}(B_{\rho})$$

$$= r\lambda^{\frac{1}{n}}(B_{1}) + \rho\lambda^{\frac{1}{n}}(B_{1})$$

$$= (r + \rho)\lambda^{\frac{1}{n}}(B_{1})$$

$$= \lambda^{\frac{1}{n}}(B_{r+\rho})$$

The last two inequalities stem from homogeneity $\lambda(B_r) = r^n \lambda(B_1)$.

8.1.9 Remark. For "nice" $A, \lim_{\rho \downarrow 0} \frac{\lambda(A(\rho)) - \lambda(A)}{\rho}$ is the "surface area". So the ball has the smallest surface area for given volume.

9 Concetration on the Sphere and on Strictly Convex Surfaces

9.0.1 Definition. Assume $K \subset \mathbb{R}^n$ is compact, convex and $0 \in K$, then we say that K is strictly convex if for any $\epsilon > 0$, there exsits $\delta > 0$ such that for all $x, y \in \partial K, d(x, y) \ge \epsilon$, then $\frac{x+y}{2} \in (1-\delta)K$. We call this function $\epsilon \mapsto \delta(\epsilon)$ a modulus of convexity.

9.0.2 Example. The ball $B_1 = \{x \in \mathbb{R}^n : ||x|| \le 1\}$ is strictly convex. For any two points $x, y \in \partial B$ with $d(x, y) \ge \epsilon$, we have

$$\left\|\frac{x+y}{2}\right\|^{2} + \left\|\frac{x-y}{2}\right\|^{2} = 2\left(\left\|\frac{x}{2}\right\|^{2} + \left\|\frac{y}{2}\right\|^{2}\right) = 1$$

$$\Rightarrow \left\|\frac{x+y}{2}\right\| = \sqrt{1 - \left\|\frac{x-y}{2}\right\|^{2}}$$

As $\left\|\frac{x-y}{2}\right\|^2 \le \frac{\epsilon^2}{4}$, we can choose $1-\delta = \sqrt{1-\frac{\epsilon^2}{4}} \le 1-\frac{\epsilon^2}{8}$ or even larger with $\delta = \frac{\epsilon^2}{8}$.

Now, we induce a measure μ on the surface ∂K by "projecting". For $A \subset \partial K$, we say that A is measurable if the cone segment

$$cs(A) = \{\alpha x : x \in A, 0 \le \alpha \le 1\}$$

is Lebesgue measurable and we define

$$\mu(A) = \frac{\lambda(cs(A))}{\lambda(cs(K))}.$$

9.0.3 Example. $K = B_1$, then μ is rotationally invariant and thus μ is the usual normalized measure on S^{n-1} .

9.0.4 Remark. In general, the measure μ is not the induced "surface" measure. We claim that sets of measure $\frac{1}{2}$ have neighbourhoods of almost full measure. Here, the distance of neighbours is inherited from \mathbb{R}^n .

9.0.5 Lemma. If A is convex and $\alpha, \beta \ge 0$, then $(\alpha + \beta)A = \alpha A + \beta B$.

Proof. We note that $(\alpha + \beta)A \subset \alpha A + \beta B$ from the definition of Minkowski sum. Conversely, given $x, y \in A$, then

$$\alpha x + \beta y = (\alpha + \beta) \frac{\alpha}{(\alpha + \beta)} x + (\alpha + \beta) \frac{\beta}{(\alpha + \beta)} y$$
$$= (\alpha + \beta) \left(\frac{\alpha}{(\alpha + \beta)} x + \frac{\beta}{(\alpha + \beta)} y \right)$$

As $\frac{\alpha}{(\alpha+\beta)}x + \frac{\beta}{(\alpha+\beta)}y \in A$ (using convexity), we conclude that $\alpha x + \beta y \in (\alpha+\beta)A$. \Box

9.0.6 Theorem. Let $K = \overline{K}$ convex, compact, $0 \in K^{\circ}$ with a modulus of convixity δ . Let $S = \delta K$ and $A \subset S$ be measurable such that $\mu(A) \geq \frac{1}{2}$, then for any $\epsilon > 0$ with $\delta(\epsilon) \leq \frac{1}{2}$,

$$\mu\left(\left\{x \in S : d(x, A) \ge \epsilon\right\}\right) \le 2\left(1 - \delta(\epsilon)\right)^{2n} \le 2e^{-2n\delta(\epsilon)}$$

Proof. Let $B = \{x \in S : d(x, A) \ge \epsilon\}$. We recall that $x \in A, y \in B$, then we have $\frac{x+y}{2} \in (1-\delta)K$. More generally, if $x' \in cs(A), y' \in cs(B)$, the same is true for $\frac{x'+y'}{2}$. Because $x' = \alpha x, y' = \beta y$ for $x \in A, y \in B, 0 \le \alpha, \beta \le 1$ and so

$$\frac{x'+y'}{2} = \frac{\alpha x + \beta y}{2}.$$

Assume that $\alpha \geq \beta$ and $\alpha > 0,$ then $\gamma = \frac{\beta}{\alpha} \leq 1$ and

$$\frac{x'+y'}{2} = \alpha \frac{x+\gamma y}{2}$$
$$= \alpha \left(\gamma \frac{x+y}{2} + (1-\gamma)\frac{x}{2}\right)$$
$$= \alpha \gamma \frac{x+y}{2} + \alpha (1-\gamma)\frac{x}{2}$$

So $\frac{x'+y'}{2} \in \alpha\gamma(1-\delta)K + \alpha(1-\gamma)(1-\delta)K = \alpha(1-\delta)K \subset (1-\delta)K$ (using the above Lemma). This implies that

$$\frac{1}{2}cs(A) + \frac{1}{2}cs(B) \subset (1-\delta)K$$

and thus

$$\lambda\left(\frac{1}{2}cs(A) + \frac{1}{2}cs(B)\right) \le (1-\delta)^n\lambda(K).$$

Using Brunn-Minkowski inequality, we obtain

$$\lambda\left(\frac{1}{2}cs(A) + \frac{1}{2}cs(B)\right) \ge [\lambda(cs(A))]^{\frac{1}{2}} \left[\lambda(cs(B))\right]^{\frac{1}{2}}$$

and

$$\begin{split} \mu(B) &= \frac{\lambda(cs(B))}{\lambda(K)} \\ &\leq (1-\delta)^{2n} \frac{\lambda(K)}{\lambda(cs(A))} \\ &= (1-\delta)^{2n} \frac{1}{\mu(A)} \\ &\leq 2(1-\delta)^{2n} \leq 2e^{-2n\delta} \end{split}$$

In particular, if $K = B_1$, then

$$\mu\left(\left\{x \in S : d(x, A) \ge \epsilon\right\}\right) \le 2e^{-\epsilon^2 n/4}$$