High-Dimensional Measures and Geometry Lecture Notes from April 6, 2010

taken by Anando Sen

9.5.1 Remark. We can similarly show that sor r > s > 0, we get,

$$\left(\int p^r d\mu\right)^{\frac{q}{r}} \le c(r,s) \int p^s d\mu.$$

So reverse Holder inequality,

$$||p||_r \le c'(r,s)||p||_s$$

is valid also when r, s < 1.

We examine the limiting case as r = 1 and $s \rightarrow 0$. From equality at s = 0, we could take endpoint derevative at s = 0 to get,

$$\ln \|p\|_1 \le c + \|\ln p\|_1$$

for integrable $\ln p$. Without c we know that,

$$\ln\left(\int pd\mu\right) \ge \int \ln pd\mu$$

Key to reverse Holder inequality was bounding measure outside of balls. Now it is essential to bound measure for small balls. We prepare with a lemma.

9.5.2 Lemma. Given a norm $p : \mathbb{R}^n \to \mathbb{R}$, let $B = \{x \in \mathbb{R}^n : p(x) \le 1\}$. Let $\delta > 0, \rho > 1$ such that $\mu(\rho B) \ge (1+\delta)\mu(B)$ then for some c > 0 we have,

$$\mu(tB) \le ct\mu(B)$$

for all 0 < t < 1.

Proof. By monotonicity of $t \to \mu(tB)$ it is enough to show this for $t = \frac{1}{2m}, m \in \mathbb{N}$ at the cost of enlarging c.

Choose $m \in \mathbb{N}$ and let $\kappa(m)$ be given by,

$$\frac{\mu\left(\frac{1}{2m}B\right)}{\mu(B)} = \frac{\kappa(m)}{m}$$

then what we want to show is that $\kappa(m)$ is bounded above by some constant depending on ρ and $\delta.$

Idea: Slice ball into "onion rings" with a "core" of radius $\frac{1}{2m}$. We prove that measure of rings is large, so by fixed total measure of the ball, core had small measure.

Enlarge κ is necessary to get $\frac{\mu\left(\frac{1}{2m}B\right)}{\mu(B)} \leq \frac{\kappa(m)}{m}$ and $\kappa(m) \geq \frac{2\delta}{\rho}$. By assumption on ρ and δ , $\mu(\rho B) \geq (1+\delta)\mu(B)$, i.e.

$$\mu(\rho B \setminus B) \ge \delta\mu(B)$$

Define for $\tau \geq 0$,

$$A_{\tau} = \{x \in \mathbb{R}^n : \tau - \frac{1}{2m} \le p(x) \le \tau + \frac{1}{2m}\}$$

Since $[1, \delta)$ can be covered by a disjoint union of at most ρm intervals of length $\frac{1}{m}$, there is $\tau' \geq 1$ such that we get "average" contribution to $\mu(\rho B \setminus B)$,

(*)
$$\mu(A_{\tau}) \ge \frac{\delta}{\rho m} \mu(B)$$

However taking convex combinations with $0 < \lambda < 1$ gives,

$$\underbrace{\lambda A_{\tau}}_{\{x:\lambda(\tau-\frac{1}{2m})\leq p(x)\leq\lambda(\tau+\frac{1}{2m})\}} + \underbrace{\frac{(1-\lambda)}{2m}}_{\{y:p(y)\leq\frac{1-\lambda}{2m}\}} \subseteq A_{\lambda\tau}$$

Now using Brunn's Minkowski inequality,

$$\mu(A_{\lambda\tau}) \ge \mu^{\lambda}(A_{\tau})\mu^{1-\lambda}(\frac{1}{2m}B)$$

with $\lambda = \frac{1}{\tau}, \tau = \tau'$.

г		