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9.5.1 Lemma. Given a norm p : Rn → R, let B = {x ∈ Rn : p(x) ≤ 1}. Let δ > 0, ρ > 1 such
that µ(ρB) ≥ (1 + ρ)µ(B) then for some c > 0 we have,

µ(tB) ≤ ctµ(B)

for all 0 < t < 1.

Proof. (continued from the previous class)
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We recall the Brunn-Minkowski inequality
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So adding these contributions and using
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Now, the sequence κ(m) must be bounded because for each m ≥ 2,
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So κ cannot grow arbitrarily large.
We claimed
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So ρ ≤ 4.
Using norm concentration forfor log concave measures with r = 2
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, t = 3,
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Define norm p′ = p
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, then
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with δ > 0. Thus for some ε > 0, µ(Bt) ≤ ct, for all 0 ≤ t ≤ ε we

select ε < 1.
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