High-Dimensional Measures and Geometry Lecture Notes from April 8, 2010

taken by Anando Sen

9.5.1 Lemma. Given a norm $p: \mathbb{R}^{n} \rightarrow \mathbb{R}$, let $B=\left\{x \in \mathbb{R}^{n}: p(x) \leq 1\right\}$. Let $\delta>0, \rho>1$ such that $\mu(\rho B) \geq(1+\rho) \mu(B)$ then for some $c>0$ we have,

$$
\mu(t B) \leq \operatorname{ct\mu }(B)
$$

for all $0<t<1$.
Proof. (continued from the previous class)
Let $\kappa(m)$ be such that,

$$
\frac{\kappa(m)}{m}=\frac{\mu\left(\frac{1}{2 m} B\right)}{\mu(B)}
$$

For all $m \in \mathbb{N}$ we have proved,

$$
\mu\left(t_{m} B\right) \leq \underbrace{\frac{4 \delta}{\rho}}_{c} t_{m} \mu(B) \quad \forall t_{m}=\frac{1}{2 m}
$$

So consider all $m \in \mathbb{N}$ such that $\kappa(m)>\frac{2 \delta}{\rho}$, thus,

$$
\mu\left(\frac{1}{2 m} B\right)>\frac{2 \delta}{\rho} \frac{1}{m} \mu(B)>\frac{\delta}{\rho m} \mu(B)
$$

We recall the Brunn-Minkowski inequality

$$
\mu\left(A_{\lambda \tau}\right) \geq \mu^{\lambda}\left(A_{\tau}\right) \mu^{1-\lambda}\left(\frac{1}{2 m} B\right)
$$

and choosing $\tau=\tau^{\prime}, \lambda=\frac{1}{\tau^{\prime}}$, and using assumptions on $m \in \mathbb{N}, \mu\left(\frac{1}{2 m} B\right)>\frac{\delta \mu(B)}{\rho m}$ gives,

$$
\tau\left(A_{1}\right) \geq \frac{\delta \mu(B)}{\rho m}
$$

Repeating the above procedure for $A_{1-\frac{1}{m}}, A_{1-\frac{2}{m}}, \ldots A_{\frac{t}{m}}$ with $\tau=\tau^{\prime}, \lambda=\frac{i}{m \tau^{\prime}}$ to get estimate for $A_{\frac{i}{m}}$ gives,

$$
\mu\left(A_{\frac{i}{m}}\right) \geq \frac{\mu(B)}{m}\left(\frac{\delta}{\rho}\right)^{1-\frac{i}{m}} \kappa^{\frac{i}{m}}
$$

So adding these contributions and using $\bigcup_{A_{\frac{i}{m}}^{m}}^{m-1} \subseteq B$, with $A_{0}=\frac{1}{2 m} B$, yields,

$$
\mu(B) \geq \sum_{i=0}^{m-1} \mu\left(A_{\frac{i}{m}}\right)
$$

and,

$$
\mu(B) \geq \frac{\mu(B)}{m} \frac{\delta}{\rho} \frac{1-\frac{\rho \kappa}{\delta}}{1-\left(\frac{\rho \kappa}{\delta}\right)^{\frac{1}{m}}}
$$

By our assumption $\kappa \geq \frac{2 \delta}{\rho}$, so

$$
\begin{aligned}
1 & \geq \frac{\kappa}{m} \frac{\frac{\delta}{\rho k}-1}{1-\left(\frac{\rho \kappa}{\delta}\right)^{\frac{1}{m}}} \\
& =\frac{\kappa}{m} \frac{1-\frac{\delta}{\rho k}}{\left(\frac{\rho \kappa}{\delta}\right)^{\frac{1}{m}}-1} \\
& \geq \frac{\kappa}{m} \frac{\frac{1}{2}}{\left(\frac{\rho \kappa}{\delta}\right)^{\frac{1}{m}}-1}
\end{aligned}
$$

So,

$$
\kappa \leq 2 m\left(\left(\frac{\rho \kappa}{\delta}\right)^{\frac{1}{m}-1}\right)
$$

Now, the sequence $\kappa(m)$ must be bounded because for each $m \geq 2$,

$$
\kappa \leq \frac{2}{\epsilon}\left(\left(\frac{\rho \kappa}{\delta}\right)^{\epsilon}-1\right)
$$

is a difference quotient for $x \mapsto\left(\frac{\rho \kappa}{\delta}\right)^{x}, 0 \leq x \leq \frac{1}{2}$ and thus the difference quotient is bounded. By derevative at right endpoint $x=\frac{1}{2}$ and thus,

$$
\begin{aligned}
& \kappa \leq 2\left(\frac{\rho x}{\delta}\right)^{\frac{1}{2}} \ln \left(\frac{\rho x}{\delta}\right) \\
& \kappa^{\frac{1}{2}} \leq 2\left(\frac{\rho}{\delta}\right)^{\frac{1}{2}} \ln \left(\frac{\rho x}{\delta}\right)
\end{aligned}
$$

So κ cannot grow arbitrarily large.
We claimed

$$
\ln \left(\int_{\mathbb{R}^{n}} p d \mu\right) \leq c+\int_{\mathbb{R}^{n}} \ln p d \mu
$$

Assume $\int_{\mathbb{R}^{n}} p d \mu=1$. We want to show $\int \ln p d \mu>-\infty$. If $t>0$, let $B_{t}=\left\{x \in \mathbb{R}^{n}: p(x) \leq t\right\}$ pick radius such that $\mu\left(B_{\rho}\right)=\frac{2}{3}$. Since μ is a probability measure,

$$
\mu\left(\left\{x \in \mathbb{R}^{n}: p(x) \geq 4\right\}\right) \leq \int_{\mathbb{R}^{n}} \frac{p(x)}{4} d \mu=\frac{1}{4}
$$

So $\rho \leq 4$.
Using norm concentration forfor log concave measures with $r=\frac{2}{3}, t=3$,

$$
\mu\left(B_{3 \rho}\right) \geq 1-\frac{2}{3} \cdot \frac{1}{4}=\frac{5}{6}
$$

Define norm $p^{\prime}=\frac{p}{\rho}$, then

$$
\begin{aligned}
B^{\prime} & =\left\{x \in \mathbb{R}^{n}: p^{\prime}(x) \leq 1\right\} \\
& =\left\{x \in \mathbb{R}^{n}: p(x) \leq \rho\right\}=B_{\rho}
\end{aligned}
$$

and $\underbrace{\mu\left(B^{\prime}\right)}_{\frac{2}{3}} \geq(1+\delta) \underbrace{\mu\left(B_{3}^{\prime}\right)}_{\geq \frac{5}{6}}$ with $\delta>0$. Thus for some $\epsilon>0, \mu\left(B_{t}\right) \leq c t$, for all $0 \leq t \leq \epsilon$ we select $\epsilon<1$.
Let $F(t)=\mu\left(B_{t}\right)$ then,

$$
\begin{aligned}
\int_{\mathbb{R}^{n}} \ln p d \mu & =\int_{0}^{\infty} \ln t d F(t) \\
& \geq \int_{0}^{1} \ln t d F(t) \\
& =\underbrace{\left.(\ln t) F(t)\right|_{0} ^{1}}_{0}-\int_{0}^{1} \frac{1}{t} F(t) d t \\
& =-\int_{0}^{\epsilon} \frac{1}{t} F(t) d t-\int_{\epsilon}^{1} \underbrace{\frac{1}{t}}_{\leq \frac{1}{\epsilon}} \underbrace{F(t)}_{\leq 1} d t \\
& \geq-c \epsilon-\int_{0}^{1} \frac{1}{\epsilon} \underbrace{F(t)}_{\leq 1} d t \\
& \geq-c \epsilon-\frac{1}{\epsilon}>-\infty
\end{aligned}
$$

