High-Dimensional Measures and Geometry
 Lecture Notes from April 15, 2010
 taken by Pankaj Singh

10 High Dimensional Measures and Geometry on Graphs

Let $G=(V, E)$ be a graph without loops or multiple edges. Define distance between two vertices $v, w \in V$ by
$d(v, w)= \begin{cases}\text { smallest number of edges in a path connecting } v \text { and } w, & \text { if there is such a path } \\ \infty, & \text { otherwise. }\end{cases}$
10.0.1 Definition. The Laplacian Δ on a graph $G=(V, E)$ is the matrix $(\Delta)_{v, w \in V}$ with entries

$$
\Delta_{v, w}=\left\{\begin{array}{cl}
\operatorname{deg}(v) & \text { if } v=w \\
-1 & \text { if }\{v, w\} \in E \\
0 & \text { otherwise }
\end{array}\right.
$$

After choosing the canonical basis, we can think of Δ as an operator on $\mathbb{R}^{V}=\{f: V \rightarrow \mathbb{R}\}$. If \mathbb{R}^{V} is equipped with the inner product

$$
\langle f, g\rangle=\sum_{v \in V} f(v) g(v)
$$

then Δ is Hermitian(Symmetric).
10.0.2 Lemma. Let $G=(V, E)$ be a graph and let E be oriented such that either vertex of $e \in E$ is chosen as the beginning, e_{+}and the other as the end, e_{-}of the edge. Define L on $E \times V$ by

$$
L_{e, w}=\left\{\begin{array}{cl}
1 & \text { if } w=e_{+} \\
-1 & \text { if } w=e_{-} \\
0 & \text { otherwise }
\end{array}\right.
$$

then $\Delta=L^{*} L$.
Proof. The (v, w) entry of Δ is claimed to be

$$
\Delta_{v, w}=\sum_{e \in E}\left(L^{*}\right)_{v, e} L_{e, w}
$$

with $\left(L^{*}\right)_{v, e}=L_{e, v}$.
If $v=w$, then we have

$$
\begin{aligned}
\Delta_{v, v} & =\operatorname{deg}(v) \\
& =\mid\left\{e \in E: \text { either } e_{+}=v \text { or } e_{-}=v\right\} \mid \\
& =\left|\left\{e \in E: L_{e, v} \in\{+1,-1\}\right\}\right| \\
& =\sum_{e \in E}\left|L_{e, v}\right|^{2} .
\end{aligned}
$$

If $v \neq w$, then there is at most one $e=e^{\prime}$ such that either $e_{+}^{\prime}=v, e_{-}^{\prime}=w$ or $e_{+}^{\prime}=w, e_{-}^{\prime}=v$, and if there is no such e^{\prime}, then $\Delta_{v, w}=0$. Also, $L_{e, v}=L_{e, w}=0$ for all $e \in E$.
If there is on such e^{\prime}, then $\Delta_{v, w}=-1$, but also

$$
\sum_{e \in E} L_{v, e}^{*} L_{e, w}=L_{e^{\prime}, v} L_{e^{\prime}, w}=-1 .
$$

This completes the proof of the lemma.
10.0.3 Corollary. The Laplacian Δ of $G=(V, E)$ is positive semi-definite. If G is connected, then the eigenspace of Δ with eigenvalue $\lambda=0$ consists of the constant functions on V.

Proof. By $\Delta=L^{*} L$, we have

$$
\langle\Delta f, f\rangle=\langle L f, L f\rangle=\|L f\|^{2} \geq 0
$$

for all $f \in \mathbb{R}^{V}$. From $\sum_{w \in V} \Delta_{v, w}=0$, it is clear that if f is constant, then $\Delta f=0$.
Conversely, assume that $\Delta f=0$. Pick $v, w \in V$ and choose an orientation such that v, w are connected by a directed path from v to w. Now, we have

$$
\begin{aligned}
\Delta f=0 & \Rightarrow\langle\Delta f, f\rangle=0 \\
& \Rightarrow\|L f\|^{2}=0 \\
& \Rightarrow L f=0 .
\end{aligned}
$$

Thus, $(L f)(e)=0$ for all $e \in E$, which implies

$$
\sum_{v \in V} L_{e, v} f_{v}=f\left(e_{+}\right)-f\left(e_{-}\right)=0
$$

for any e on the path. Therefore, $f(v)=$ constant for all $v \in V$ (by connectivity of G).
From now on, we focus on concentration. An essential is the smallest non-zero eigenvalue, λ_{1} of Δ. We write the spectral decomposition of Δ as

$$
\Delta=\sum_{j=1}^{m} \lambda_{j} P_{j}
$$

$P_{j}=P_{j}^{*} P_{j}, P_{j} P_{k}=0$ if $j \neq k$.
Note that if $\sum_{v \in V} f_{v}=0$, then

$$
\begin{aligned}
\langle\Delta f, f\rangle & =\sum_{j=1}^{m} \lambda_{j}\left\langle P_{j} f, f\right\rangle \\
& \geq \lambda_{1} \sum_{j=1}^{m}\left\langle P_{j} f, f\right\rangle \\
& =\lambda_{1}\|f\|^{2} .
\end{aligned}
$$

Now, we relate λ_{1} to the number of edges between sets.
10.0.4 Theorem. Let $G=(V, E)$ be a connected graph and $X \subset V$ be a subset of vertices. Let $E(X, V \backslash X)$ be the set of edges connecting X with its complement. Then,

$$
|E(X, V \backslash X)| \geq \lambda_{1} \frac{|X||V \backslash X|}{|V|}
$$

with λ_{1}, the smallest non-zero eigenvalue of Δ on G.
Proof. Let χ_{X} be the indicator function of X. Consider $p=\frac{|X|}{|V|}$, and let $f=\chi_{X}-p$, then we have

$$
\sum_{v \in V} f_{v}=|X|-p|V|=0
$$

So f is orthogonal to constants. Also note that

$$
\begin{aligned}
\|f\|^{2} & =\left\langle\chi_{X}-p, \chi_{X}-p\right\rangle \\
& =|X|-2\left\langle\chi_{x}, p 1\right\rangle+p^{2}|V| \\
& =(1-p)|X| \\
& =\frac{|V \backslash X|}{|V|}|X| .
\end{aligned}
$$

Thus, we have

$$
\langle\Delta f, f\rangle \geq \lambda_{1}\|f\|^{2}=\lambda_{1} \frac{|V \backslash X|}{|V|}|X| .
$$

On the other hand,

$$
\Delta f=\Delta\left(\chi_{X}-p\right)=\Delta\left(\chi_{X}\right) \text { as } \Delta p=0 .
$$

Therefore,

$$
\begin{aligned}
\langle\Delta f, f\rangle & =\left\langle\Delta \chi_{X},\left(\chi_{X}-p\right)\right\rangle \\
& =\left\langle\chi_{X}, \Delta\left(\chi_{X}-p\right)\right\rangle \\
& =\left\langle\chi_{X}, \Delta \chi_{X}\right\rangle \\
& =\left\langle\Delta \chi_{X}, \chi_{X}\right\rangle \\
& =\left\|L \chi_{X}\right\|^{2} \\
& =\sum_{e \in E}\left|L \chi_{X}(e)\right|^{2} \\
& =\sum_{e \in E}\left|\chi_{X}\left(e_{+}\right)-\chi_{X}\left(e_{-}\right)\right|^{2} \\
& =\mid\left\{e \in E: e_{+} \in X, e_{-} \notin X \text { or } e_{+} \notin X, e_{-} \in X\right\} \mid \\
& =|E(X, V \backslash X)| .
\end{aligned}
$$

Hence, we have

$$
|E(X, V \backslash X)| \geq \lambda_{1} \frac{|V \backslash X|}{|V|}|X| .
$$

