High-Dimensional Measures and Geometry
Lecture Notes from April 15, 2010

taken by Pankaj Singh

10 High Dimensional Measures and Geometry on Graphs

Let G = (V, E) be a graph without loops or multiple edges. Define distance between two vertices
v,w €V by

smallest number of edges in a path connecting v and w, if there is such a path

0, otherwise.
10.0.1 Definition. The Laplacian A on a graph G = (V, E) is the matrix (A), wey with entries

deg(v) ifv=w
AVRES -1 if{o,w} ek
0 otherwise.

After choosing the canonical basis, we can think of A as an operator on RV = {f : V — R}. If
RY is equipped with the inner product

(f,9)=>_ f(w)g(v),

veV
then A is Hermitian(Symmetric).

10.0.2 Lemma. Let G = (V, E) be a graph and let E be oriented such that either vertex of
e € FE is chosen as the beginning, e, and the other as the end, e_ of the edge. Define L on
ExV by
1 ifw=ey
Lew=1< —1 ifw=e_
0  otherwise

then A = L*L.

Proof. The (v, w) entry of A is claimed to be

A'L},w = Z(L*>v,eLe,w

ecE

1



with (L*)ye = Le,.
If v = w, then we have
Av,v - deg(v)
=|{e € E: either e, =vore_ = v}
=H{ecE: Ley € {+1,-1}}

= |Leu|*

eckE
If v # w, then there is at most one e = €’ such that either ¢/, = v, =w or €/, = w,e_ =,
and if there is no such €, then A, ,, = 0. Also, L., = L., =0 for all e € E.
If there is on such €', then A, ,, = —1, but also
> LiLew= LeyLew=—1.
eck
This completes the proof of the lemma. O]

10.0.3 Corollary. The Laplacian A of G = (V, E) is positive semi-definite. If G is connected,
then the eigenspace of A with eigenvalue \ = O consists of the constant functions on V.

Proof. By A = L*L, we have
(Af, f) =(Lf,Lf) = [ILfI* =0

for all f € RV. From Z A, =0, it is clear that if f is constant, then Af = 0.

weV
Conversely, assume that Af = 0. Pick v,w € V and choose an orientation such that v, w are

connected by a directed path from v to w. Now, we have

Af=0=(Af,f)=0
= |ILf|* =0
= Lf=0.

Thus, (Lf)(e) = 0 for all e € E, which implies

ZLe,va - f(e-i-) - f(e—) =0

veV
for any e on the path. Therefore, f(v) = constant for all v € V(by connectivity of G). O

From now on, we focus on concentration. An essential is the smallest non-zero eigenvalue,
A1 of A. We write the spectral decomposition of A as

A= i)\ij,
j=1



Py =P'P;, PP, =01if j # k.
Note that if va =0, then

veV

(Af £) = D NP )

m

J=1

= | f]1%.

Now, we relate A\; to the number of edges between sets.

10.0.4 Theorem. Let G = (V, E) be a connected graph and X C V be a subset of vertices.
Let E(X,V \ X) be the set of edges connecting X with its complement. Then,

(XIV A\ X

EX,V\NX)|>A
BV X 2 0

with \1, the smallest non-zero eigenvalue of A on (.

Proof. Let xx be the indicator function of X. Consider p = ‘%' and let f = xx — p, then we

%
have

> fo=IX[=plV]=0

veV

So f is orthogonal to constants. Also note that

11 = (xx —p,xx — D)
= |X| - 2{xx,pl) + p*|V|

= (1-p)X|
[V X]
= X|.
v | X
Thus, we have
VX
@102 Ml = 0

On the other hand,
Af=A(xx —p) = Axx) as Ap=0.



Therefore,

(AL, f) = (Axx, (xx —p))
= (xx; Alxx —p))
<XX7AXX>
<AXX7XX>
= || Lxx|”

=) |Lxx(e)P

ecE

= Z Ixx(er) = xx(e)|?

eck
={ecF:e;eXe ¢ Xore, ¢ X,e_ € X}
= [E(X, V\ X)|.

Hence, we have
[V X]

BV X)| 2 e

| X].



