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10 High Dimensional Measures and Geometry on Graphs

Let G = (V,E) be a graph without loops or multiple edges. Define distance between two vertices
v, w ∈ V by

d(v, w) =


smallest number of edges in a path connecting v and w, if there is such a path

∞, otherwise.

10.0.1 Definition. The Laplacian ∆ on a graph G = (V,E) is the matrix (∆)v,w∈V with entries

∆v,w =


deg(v) if v = w
−1 if {v, w} ∈ E
0 otherwise.

After choosing the canonical basis, we can think of ∆ as an operator on RV = {f : V → R}. If
RV is equipped with the inner product

〈f, g〉 =
∑
v∈V

f(v)g(v),

then ∆ is Hermitian(Symmetric).

10.0.2 Lemma. Let G = (V,E) be a graph and let E be oriented such that either vertex of
e ∈ E is chosen as the beginning, e+ and the other as the end, e− of the edge. Define L on
E × V by

Le,w =


1 if w = e+
−1 if w = e−
0 otherwise

then ∆ = L∗L.

Proof. The (v, w) entry of ∆ is claimed to be

∆v,w =
∑
e∈E

(L∗)v,eLe,w
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with (L∗)v,e = Le,v.
If v = w, then we have

∆v,v = deg(v)

= |{e ∈ E : either e+ = v or e− = v}|
= |{e ∈ E : Le,v ∈ {+1,−1}}|

=
∑
e∈E

|Le,v|2.

If v 6= w, then there is at most one e = e′ such that either e′+ = v, e′− = w or e′+ = w, e′− = v,
and if there is no such e′, then ∆v,w = 0. Also, Le,v = Le,w = 0 for all e ∈ E.
If there is on such e′, then ∆v,w = −1, but also∑

e∈E

L∗v,eLe,w = Le′,vLe′,w = −1.

This completes the proof of the lemma.

10.0.3 Corollary. The Laplacian ∆ of G = (V,E) is positive semi-definite. If G is connected,
then the eigenspace of ∆ with eigenvalue λ = 0 consists of the constant functions on V .

Proof. By ∆ = L∗L, we have

〈∆f, f〉 = 〈Lf, Lf〉 = ‖Lf‖2 ≥ 0

for all f ∈ RV . From
∑
w∈V

∆v,w = 0, it is clear that if f is constant, then ∆f = 0.

Conversely, assume that ∆f = 0. Pick v, w ∈ V and choose an orientation such that v, w are
connected by a directed path from v to w. Now, we have

∆f = 0⇒ 〈∆f, f〉 = 0

⇒ ‖Lf‖2 = 0

⇒ Lf = 0.

Thus, (Lf)(e) = 0 for all e ∈ E, which implies∑
v∈V

Le,vfv = f(e+)− f(e−) = 0

for any e on the path. Therefore, f(v) = constant for all v ∈ V (by connectivity of G).

From now on, we focus on concentration. An essential is the smallest non-zero eigenvalue,
λ1 of ∆. We write the spectral decomposition of ∆ as

∆ =
m∑

j=1

λjPj,
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Pj = P ∗j Pj, PjPk = 0 if j 6= k.

Note that if
∑
v∈V

fv = 0, then

〈∆f, f〉 =
m∑

j=1

λj〈Pjf, f〉

≥ λ1

m∑
j=1

〈Pjf, f〉

= λ1‖f‖2.

Now, we relate λ1 to the number of edges between sets.

10.0.4 Theorem. Let G = (V,E) be a connected graph and X ⊂ V be a subset of vertices.
Let E(X, V \X) be the set of edges connecting X with its complement. Then,

|E(X, V \X)| ≥ λ1
|X||V \X|
|V |

with λ1, the smallest non-zero eigenvalue of ∆ on G.

Proof. Let χX be the indicator function of X. Consider p = |X|
|V | , and let f = χX − p, then we

have ∑
v∈V

fv = |X| − p|V | = 0

So f is orthogonal to constants. Also note that

‖f‖2 = 〈χX − p, χX − p〉
= |X| − 2〈χX , p1〉+ p2|V |
= (1− p)|X|

=
|V \X|
|V |

|X|.

Thus, we have

〈∆f, f〉 ≥ λ1‖f‖2 = λ1
|V \X|
|V |

|X|.

On the other hand,
∆f = ∆(χX − p) = ∆(χX) as ∆p = 0.
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Therefore,

〈∆f, f〉 = 〈∆χX , (χX − p)〉
= 〈χX ,∆(χX − p)〉
= 〈χX ,∆χX〉
= 〈∆χX , χX〉
= ‖LχX‖2

=
∑
e∈E

|LχX(e)|2

=
∑
e∈E

|χX(e+)− χX(e−)|2

= |{e ∈ E : e+ ∈ X, e− /∈ X or e+ /∈ X, e− ∈ X}|
= |E(X, V \X)|.

Hence, we have

|E(X, V \X)| ≥ λ1
|V \X|
|V |

|X|.
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