
High-Dimensional Measures and Geometry
Lecture Notes from April 22, 2010

taken by Ali S. Kavruk

We start this lecture by finding the volume of closed unit ball in Rn. Then we take the
ball with volume one, which has a pretty big radius, and project the mass distribution to the
n − 1 dimensional slices of a fixed direction. We see that that the projected distribution forms
approximately the Gaussian distribution. In the second part we will consider polytopes and we
state some relations between the number of faces of the polytope and its distance the the closed
unit ball. This presentation is a summary of Section 1 and 2 of [1]. Let

Bn
2 = {x ∈ Rn :

n∑
i=1

x2
i ≤ 1}.

That is, Bn
2 is the closed unit ball with respect to l2 norm. So let vn represent this volume. We

will use the following generalized fact which is well known when n is 2 or 3. If a cone in Rn has
height h and has base staying in an n− 1 dimensional subsape with volume B then the volume
of the cone is given by Bh/n. We will approximate the volume vn by considering the ball Bn

2 as
the union of cones. The surface will be the base of the cones. A realization of this technique for
n = 3 is given in the figure. The region selected almost acts as a cone with height approximately
1.

We will obtain the “surface area” of the closed unit ball in terms of its volume. So let, as
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usual,

Sn−1 = {x ∈ Rn :
n∑
i=1

x2
i = 1}.

Then the surface area of Sn−1 is nvn. To find the volume vn of Bn
2 we will use the spherical

polar integration. For a point x in Rn let θ = x/‖x‖2 and r = ‖x‖2. So we can write x = rθ
with θ being on the unit sphere Sn−1. For an integrable function f : Rn → R we have∫

Rn

fdx =

∫ ∞
r=0

∫
Sn−1

f(rθ)dθrn−1dr.

Here the factor rn−1 appears because the surface area of the sphere of radius r is rn−1 times the
surface area of the unit sphere. Note that if dθ is the area measure on Sn−1 then the normalized
Lebesgue measure σ is given by nvndσ = dθ. Thus we have∫

Rn

fdx = nvn

∫ ∞
r=0

∫
Sn−1

f(rθ)dσ(θ)rn−1dr.

Now we will integrate the function f(x) = e−‖x‖
2/2 = exp(−1

2
(
∑
x2
i )) both with respect to the

the cartesian coordinates and the spherical polar coordinates.∫
Rn

fdx =

∫
Rn

∏
e−x

2
i /2dx =

∏∫
Rn

e−x
2
i /2dx = (

√
2π)n.

On the other hand∫
Rn

fdx = nvn

∫ ∞
r=0

∫
Sn−1

e−r
2/2rn−1dσ(θ)dr = nvn

∫ ∞
r=0

e−r
2/2rn−1dr = vn2n/2Γ(

n

2
+ 1).

So we get

vn =
πn/2

Γ(n
2

+ 1)
.

It is interesting that the volume vn of Bn
2 is extremely small for large n. In fact by using the

Stirling formula

Γ(
n

2
+ 1) ≈

√
2πe−n/2

(n
2

)(n+1)/2

we have that, for large n,

vn ≈

(√
2πe

n

)n

.

For example to obtain the ball of volume 1, the radius must be roughly

r =

√
n

2πe
.

A ball of radius r in Rn has a volume vnr
n. So to obtain the ball of volume 1 the radius has to

be
r = v−1/n

n .
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We will consider the slices of this ball and compute volume of this n − 1 dimensional balls. A
slice with a distance to the origin x has radius

√
r2 − x2 so its volume is

vn−1

(√
r2 − x2

)n−1

= vn−1r
n−1

(
1− x2

r2

)n−1
2

.

Note that the expression vn−1r
n−1 is the volume of the n − 1 ball with radius v

−1/n
n . Applying

the Stirling formula it is not hard to show that it approximates
√
e for large n. Also since r is

roughly
√
n/2πe we see that volume of the slice having distance x to the origin is

√
e

(
1− x2

r2

)n−1
2

=
√
e

(
1− 2πex2

n

)n−1
2

≈
√
e exp(−πex2) = e−πex

2+1/2.

Note that this is Gaussian distribution with variance 1/(2πe). Consequently the projection of the
mass distribution of the n-ball of volume 1 approximately forms a Gaussian distribution on the
n− 1 dimensional subspace. Also it is intersting to see that the variance is independent of n.

In this part we consider the symmetric polytopes and state a relation between the number
of facets and the distance of the polytope to the unit ball. Let K and L be two convex bodies
in Rn. The distance d(K,L) between K and L is defined to be the least positive number d
such that there is a linear image L̃ of L with L̃ ⊂ K ⊂ dL̃. Note that d is not a metric, it is
symmetric and multiplicative. For any K d(K,K) = 1. Infact log d is a metric.

11.0.1 Theorem. Let K be a symmetric polytope in Rn with d(K,Bn
2 ). Then K has at least

exp
(
n/(2d2)

)
facets. For each n there is a polytope with 4n facets whose distance form the ball

is at most 2.

A symmetric polytope in Rn with m pairs of facets is a slice (through the center) of a cube
in Rm. To see this note that the polytope must be intersection of m slabs in Rn each of them
is given by {x : |〈x, vi〉| ≤ 1} for some non-zero vector vi. So the polytope is given by

{x : |〈x, vi〉| ≤ 1 for i = 1, ...,m}.

Define T : Rn → Rm by Tx = (〈x, v1〉, ..., 〈x, vm〉). The image of Rn under T is an n dimen-
sional subspace of Rm, say H, such that its intersection with [−1, 1]m is exactly the image of the
polytope under T . Conversely any n dimensional slice of [−1, 1]m is a polytope with at most m
pair of faces.

We close this part by stating an upper and a lower bound for the spherical cups in Rn. As
usual Sn−1 = {x ∈ Rn : ‖x‖ = 1}. For a unit vector v and 0 ≤ ε < 1 we define

C(ε, v) = {u ∈ Sn−1 : 〈u, v〉 ≥ ε}.

This set forms a spherical cup. We use the notation Cr(v) for the spherical cup of radius r
centered at v. Note the cup C(ε, v) is not defined by the radius. We will use the the normalized
Lebesgue on the surface.

11.0.2 Lemma. The cup C(ε, v) has measure at most e−nε
2/2.
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11.0.3 Lemma. For 0 ≤ r ≤ 2, Cr(v) has measure at least 1
2
(r/2)n−1.

Reference:
Ball, Keith. An Elementary Introduction to Modern Convex Geometry. Flavors of Geometry
MSRI Publications Volume 31, (1997).
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