High-Dimensional Measures and Geometry Lecture Notes from April 27, 2010
 taken by ALI S. KAVRUK

10.2 Products Of Graphs

Let $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ be two graphs. By product of the graphs G_{1} and G_{2}, denoted by $G_{1} \times G_{2}$, we mean the graph having the vertex set $V_{1} \times V_{2}$ and the edge set defined as follows:
$\left(u_{1}, u_{2} ; v_{1}, v_{2}\right)$ with $u_{1}, v_{1} \in V_{1}$ and $u_{2}, v_{2} \in V_{2}$ is an edge of the product graph $G_{1} \times G_{2}$

$$
u_{1}=v_{1} \text { and }\left(u_{2}, v_{2}\right) \in E_{2} \text { or } u_{2}=v_{2} \text { and }\left(u_{1}, v_{1}\right) \in E_{1} \text {. }
$$

Example: Consider $I_{1}=(\{0,1\},(0,1))$. Then $I_{1} \times I_{1}$ will be the graph with vertex set $V=$ $\{(0,0),(0,1),(1,0),(1,1)\}$ and the edge set

$$
E\left(I_{1} \times I_{1}\right)=\{(0,0 ; 0,1),(1,0 ; 1,1),(0,0 ; 1,0),(0,1 ; 1,1)\}
$$

which directly follows from the definition. Note that $I_{1} \times I_{1}$ is same as I_{2}. In general we have

$$
I_{n} \times I_{m}=I_{n+m}
$$

The Laplacian \triangle of the product graph $G_{1} \times G_{2}$ given by

$$
\triangle=\triangle_{1} \otimes I_{V_{2}}+I_{V_{1}} \otimes \triangle_{2}
$$

where \triangle_{1} and \triangle_{2} are the Laplacian of G_{1} and G_{2}.
Example: Consider the previous example where

$$
\triangle_{1}=\triangle_{2}=\left(\begin{array}{rr}
1 & -1 \\
-1 & 1
\end{array}\right) .
$$

Then

$$
\triangle=\left(\begin{array}{rrrr}
1 & 0 & -1 & 0 \\
0 & 1 & 0 & -1 \\
-1 & 0 & 1 & 0 \\
0 & -1 & 0 & 1
\end{array}\right)+\left(\begin{array}{rrrr}
1 & -1 & 0 & 0 \\
-1 & 1 & 0 & 0 \\
0 & 0 & 1 & -1 \\
0 & 0 & -1 & 1
\end{array}\right)=\left(\begin{array}{rrrr}
2 & -1 & -1 & 0 \\
-1 & 2 & 0 & -1 \\
-1 & 0 & 2 & -1 \\
0 & -1 & -1 & 2
\end{array}\right)
$$

is the \triangle_{2}, Laplacian of I_{2}.
Since $\triangle_{1} \otimes I_{V_{2}}$ and $I_{V_{1}} \otimes \triangle_{2}$ commute, the eigenvalues of \triangle is the sum of eigenvalues of \triangle_{1} and \triangle_{2}. So the smallest non-zero eigenvalue of \triangle is given by

$$
\lambda_{1}(\triangle)=\min \left\{\lambda_{1}\left(\triangle_{1}\right), \lambda_{1}\left(\triangle_{2}\right)\right\} .
$$

We can iterate this tensoration and for example we can obtain the Laplacian \triangle_{n} of I_{n}

$$
\lambda_{1}\left(\triangle_{n}\right)=\lambda_{1}\left(\triangle_{1}\right)=\left(\frac{1}{\sqrt{2}}-\left(\frac{1}{\sqrt{2}}\right)\right)^{2}=2 .
$$

This completes the explanation why the equality holds for I_{n} in preceding theorem.
We have already established that

$$
\lambda_{1}(\triangle) \leq \frac{|V|}{|V|-1} d
$$

where d is the minimal degree. For $I_{n}, d=n$ so this bound does not contain enough information. We will construct a better estimation.
10.2.1 Theorem. Let $G=(V, E)$ be a connected graph and $A, B \subset V$ be two disjoint subsets with distance

$$
\rho=d(A, B)=\min \{d(u, v): u \in A v \in B\} .
$$

Let $E(A)$ be the set of edges with both end points in A. Similarly define $E(B)$. Then

$$
|E|-|E(A)|-|E(B)| \geq \lambda_{1}(\triangle) \rho^{2} \frac{|A||B|}{|A|+|B|}
$$

Proof. Recall that if $f \in V^{\mathbb{R}}$ with $\sum f(v)=0$ then $\langle\triangle f, f\rangle \geq \lambda_{1}(\triangle)\|f\|^{2}$. We will apply this result to a special function f. Let

$$
a=\frac{|A|}{|V|} \text { and } b=\frac{|B|}{|V|}
$$

and consider the function g defined by

$$
g(v)=\frac{1}{a}-\frac{1}{\rho}\left(\frac{1}{a}+\frac{1}{b}\right) \min \{d(v, A), \rho\} .
$$

Note that if $v \in A$ then $g(v)=1 / a$ and if $v \in B$ then $g(v)=-1 / b$. Let

$$
p=\sum_{v \in V} g(v)
$$

and set $f(v)=g(v)-p$. Clearly $\sum f(v)=0$. Consider the following estimation

$$
\|f\|^{2}=\sum_{v \in V}(f(v))^{2} \geq \sum_{v \in A \cup B}(f(v))^{2}=\sum_{v \in A}\left(\frac{1}{a}-p\right)^{2}+\sum_{v \in B}\left(-\frac{1}{b}-p\right)^{2}
$$

Note that first sum is $|A|(1 / a-p)^{2}$ and the second sum is $|B|(-1 / b-p)^{2}$. By expanding the squares and writing $a=|A| /|V|$ and $b=|B| /|V|$ we get

$$
\|f\|^{2} \geq \frac{|V|^{2}}{|A|^{2}}|A|-2 p \frac{|V|}{|A|}|A|+p^{2}|A|+\frac{|V|^{2}}{|B|^{2}}|B|-2 p \frac{|V|}{|B|}|B|+p^{2}|B|
$$

Note that the mid-terms cancel and we obtain

$$
\|f\|^{2} \geq \frac{|V|^{2}}{|A|}+\frac{|V|^{2}}{|B|}+p^{2}(|A|+|B|) \geq \frac{|V|^{2}}{|A|}+\frac{|V|^{2}}{|B|}=|V|\left(\frac{1}{a}+\frac{1}{b}\right) .
$$

On the other hand

$$
\langle\triangle f, f\rangle=\sum_{e \in E}\left(f\left(e_{+}\right)-f\left(e_{-}\right)\right)^{2}=\sum_{e \in E \backslash(E(A) \cup E(B))}\left(f\left(e_{+}\right)-f\left(e_{-}\right)\right)^{2}
$$

since f is constant on A and B. Note that if e_{-}is not an element of B then it is not difficult to see that

$$
\left|f\left(e_{+}\right)-f\left(e_{-}\right)\right|=\left|g\left(e_{+}\right)-g\left(e_{-}\right)\right| \leq \frac{1}{\rho}\left(\frac{1}{a}+\frac{1}{b}\right) .
$$

Thus

$$
\langle\triangle f, f\rangle \leq(|E|-|E(A)|-|E(B)|) \frac{1}{\rho^{2}}\left(\frac{1}{a}+\frac{1}{b}\right)^{2}
$$

Now putting both bounds together and using the fact that $\langle\triangle f, f\rangle \geq \lambda_{1}(\triangle)\|f\|^{2}$ it is easy to see that the inequality follows.

We will apply this result to prove measure concentration of certain subsets of graphs. We first consider the growth of a set $X \subset V$ in steps. Given $r \geq 0$ we let

$$
X(r)=\{v \in V: d(v, X) \leq r\}
$$

We use the normalized counting measure on V, that is, for a set $S \subset V, \mu(S)=|S| /|V|$. We note that if $e \in E(X, V \backslash X)$ then $e \in E(X, X(1) \backslash X)$. If in $X(1) \backslash X$ each vertex has degree at most d then clearly we have

$$
|X(1) \backslash X| \geq \frac{1}{d}|E(X, X(1) \backslash X)|=\frac{1}{d}|E(X, V \backslash X)|
$$

Now applying the previous theorem we get

$$
|X(1) \backslash X| \geq \frac{1}{d}|E(X, V \backslash X)| \geq \frac{\lambda_{1}(\triangle)}{d} \frac{|X||V \backslash X|}{|V|}
$$

and dividing both side by $|V|$ we get

$$
\mu(X(1) \backslash X) \geq \frac{\lambda_{1}(\triangle)}{d} \mu(X)(1-\mu(X))
$$

Since $\mu(X(1) \backslash X)=\mu(X(1))-\mu(X)$ we get

$$
\mu(X(1)) \geq\left(1+\frac{\lambda_{1}(\triangle)}{d}(1-\mu(X))\right) \mu(X)
$$

Now assuming $\mu(X) \leq 1 / 2$ we obtain the following inequality

$$
\mu(X(1)) \geq\left(1+\frac{\lambda_{1}(\triangle)}{2 d}\right) \mu(X)
$$

which means that X grows at a minimum rate $1+\lambda_{1}(\triangle) / 2 d$ while it has sufficiently small measure.

