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10.2 Products Of Graphs

Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs. By product of the graphs G1 and G2,
denoted by G1 ×G2, we mean the graph having the vertex set V1 × V2 and the edge set defined
as follows:

(u1, u2; v1, v2) with u1, v1 ∈ V1 and u2, v2 ∈ V2 is an edge of the product graph G1 ×G2

m

u1 = v1 and (u2, v2) ∈ E2 or u2 = v2 and (u1, v1) ∈ E1.

Example: Consider I1 = ({0, 1}, (0, 1)). Then I1 × I1 will be the graph with vertex set V =
{(0, 0), (0, 1), (1, 0), (1, 1)} and the edge set

E(I1 × I1) = {(0, 0; 0, 1), (1, 0; 1, 1), (0, 0; 1, 0), (0, 1; 1, 1)}

which directly follows from the definition. Note that I1 × I1 is same as I2. In general we have

In × Im = In+m.

The Laplacian 4 of the product graph G1 ×G2 given by

4 = 41 ⊗ IV2 + IV1 ⊗42

where 41 and 42 are the Laplacian of G1 and G2.

Example: Consider the previous example where

41 = 42 =

(
1 −1
−1 1

)
.

Then

4 =


1 0 −1 0
0 1 0 −1
−1 0 1 0

0 −1 0 1

+


1 −1 0 0
−1 1 0 0

0 0 1 −1
0 0 −1 1

 =


2 −1 −1 0
−1 2 0 −1
−1 0 2 −1

0 −1 −1 2


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is the 42, Laplacian of I2.

Since 41 ⊗ IV2 and IV1 ⊗ 42 commute, the eigenvalues of 4 is the sum of eigenvalues of
41 and 42. So the smallest non-zero eigenvalue of 4 is given by

λ1(4) = min{λ1(41), λ1(42)}.

We can iterate this tensoration and for example we can obtain the Laplacian 4n of In

λ1(4n) = λ1(41) =

(
1√
2
− (

1√
2
)

)2

= 2.

This completes the explanation why the equality holds for In in preceding theorem.

We have already established that

λ1(4) ≤ |V |
|V | − 1

d

where d is the minimal degree. For In, d = n so this bound does not contain enough information.
We will construct a better estimation.

10.2.1 Theorem. Let G = (V,E) be a connected graph and A,B ⊂ V be two disjoint subsets
with distance

ρ = d(A,B) = min{d(u, v) : u ∈ A v ∈ B}.

Let E(A) be the set of edges with both end points in A. Similarly define E(B). Then

|E| − |E(A)| − |E(B)| ≥ λ1(4)ρ2 |A||B|
|A|+ |B|

.

Proof. Recall that if f ∈ V R with
∑
f(v) = 0 then 〈4f, f〉 ≥ λ1(4)‖f‖2. We will apply this

result to a special function f . Let

a =
|A|
|V |

and b =
|B|
|V |

and consider the function g defined by

g(v) =
1

a
− 1

ρ

(
1

a
+

1

b

)
min{d(v,A), ρ}.

Note that if v ∈ A then g(v) = 1/a and if v ∈ B then g(v) = −1/b. Let

p =
∑
v∈V

g(v)

and set f(v) = g(v)− p. Clearly
∑
f(v) = 0. Consider the following estimation

‖f‖2 =
∑
v∈V

(f(v))2 ≥
∑

v∈A∪B

(f(v))2 =
∑
v∈A

(
1

a
− p)2 +

∑
v∈B

(−1

b
− p)2
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Note that first sum is |A|(1/a − p)2 and the second sum is |B|(−1/b − p)2. By expanding the
squares and writing a = |A|/|V | and b = |B|/|V | we get

‖f‖2 ≥ |V |
2

|A|2
|A| − 2p

|V |
|A|
|A|+ p2|A|+ |V |

2

|B|2
|B| − 2p

|V |
|B|
|B|+ p2|B|.

Note that the mid-terms cancel and we obtain

‖f‖2 ≥ |V |
2

|A|
+
|V |2

|B|
+ p2(|A|+ |B|) ≥ |V |

2

|A|
+
|V |2

|B|
= |V |

(
1

a
+

1

b

)
.

On the other hand

〈4f, f〉 =
∑
e∈E

(f(e+)− f(e−))2 =
∑

e∈E\(E(A)∪E(B))

(f(e+)− f(e−))2

since f is constant on A and B. Note that if e− is not an element of B then it is not difficult
to see that

|f(e+)− f(e−)| = |g(e+)− g(e−)| ≤ 1

ρ

(
1

a
+

1

b

)
.

Thus

〈4f, f〉 ≤
(
|E| − |E(A)| − |E(B)|

) 1

ρ2

(
1

a
+

1

b

)2

.

Now putting both bounds together and using the fact that 〈4f, f〉 ≥ λ1(4)‖f‖2 it is easy to
see that the inequality follows.

We will apply this result to prove measure concentration of certain subsets of graphs. We
first consider the growth of a set X ⊂ V in steps. Given r ≥ 0 we let

X(r) = {v ∈ V : d(v,X) ≤ r}.

We use the normalized counting measure on V , that is, for a set S ⊂ V , µ(S) = |S|/|V |. We
note that if e ∈ E(X, V \X) then e ∈ E(X,X(1) \X). If in X(1) \X each vertex has degree
at most d then clearly we have

|X(1) \X| ≥ 1

d
|E(X,X(1) \X)| = 1

d
|E(X, V \X)|.

Now applying the previous theorem we get

|X(1) \X| ≥ 1

d
|E(X, V \X)| ≥ λ1(4)

d

|X||V \X|
|V |

and dividing both side by |V | we get

µ(X(1) \X) ≥ λ1(4)

d
µ(X)

(
1− µ(X)

)
.

Since µ(X(1) \X) = µ(X(1))− µ(X) we get

µ(X(1)) ≥
(

1 +
λ1(4)

d

(
1− µ(X)

))
µ(X).
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Now assuming µ(X) ≤ 1/2 we obtain the following inequality

µ(X(1)) ≥
(

1 +
λ1(4)

2d

)
µ(X)

which means that X grows at a minimum rate 1 + λ1(4)/2d while it has sufficiently small
measure.
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