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10.2 Products Of Graphs

Let G; = (V4, Ey) and Gy = (V3, E3) be two graphs. By product of the graphs G and Go,
denoted by GGy x G2, we mean the graph having the vertex set V; x V5 and the edge set defined
as follows:

(uy, ug; vy, v2) with uy, vy € Vi and ug, v9 € V4 is an edge of the product graph G; x Gs

)

uy; = vy and (ug, vy) € Ey or uy = ve and (ug,v;1) € E.

Example: Consider I; = ({0,1},(0,1)). Then I; x I; will be the graph with vertex set V' =
{(0,0),(0,1),(1,0),(1,1)} and the edge set

E(I, x I) = {(0,0;0,1),(1,0;1,1),(0,0;1,0),(0,1; 1, 1)}
which directly follows from the definition. Note that /; x I; is same as I5. In general we have
Iy X Iy = Lyym.
The Laplacian A of the product graph G; x G5 given by
A=N01@ Iy, + Iy, @ Dy

where A1 and A, are the Laplacian of GG; and Gs.

Example: Consider the previous example where
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Then
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is the Ay, Laplacian of Is.

Since A; ® Iy, and Iy, ® Ay commute, the eigenvalues of A is the sum of eigenvalues of
A1 and A,. So the smallest non-zero eigenvalue of A is given by

A (A) = min{ )\ (A1), A1 (D9)}.
We can iterate this tensoration and for example we can obtain the Laplacian A,, of I,
M) = n() = (- () =2
1 n) — 1 1) — \/i \/5 - .

This completes the explanation why the equality holds for I, in preceding theorem.

We have already established that

Vi
A) <
Al( ) —-|‘/’__1

where d is the minimal degree. For I,,, d = n so this bound does not contain enough information.
We will construct a better estimation.

d

10.2.1 Theorem. Let G = (V, E) be a connected graph and A, B C V be two disjoint subsets
with distance
p=d(A,B) =min{d(u,v): u€ Av € B}.

Let E(A) be the set of edges with both end points in A. Similarly define E(B). Then

2_|AllB]

[El = [E(A)| = |E(B)| = M(D)p TAT+ 5]

Proof. Recall that if f € VE with Y f(v) = 0 then (Af, f) > M\ (D) f]|?. We will apply this
result to a special function f. Let

Al |B|
a=+—and b= —
Vi Vi

and consider the function g defined by

o) = 5 = 3 (5 5 ) minfato, 4). 3

a

Note that if v € A then g(v) = 1/a and if v € B then g(v) = —1/b. Let
p=> g

and set f(v) = g(v) —p. Clearly > f(v) = 0. Consider the following estimation
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Note that first sum is |A|(1/a — p)? and the second sum is |B|(—1/b — p)?. By expanding the
squares and writing a = |A|/|V| and b = |B|/|V| we get

V] V] 2
fl? > Al = 2p—|A| + p*|A| + =5
1P = Fsldl = 2014 + 5714
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Note that the mid-terms cancel and we obtain
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On the other hand
(AF )= (fles) = fle) = > (fler) = flen))?
ecE e€E\(E(A)UE(B))

since f is constant on A and B. Note that if e_ is not an element of B then it is not difficult
to see that

1/1 1
M@Q—f@JFﬂdm&—ﬂaﬂé;(a+g>.

Thus
(O ) < (1E|— |B(A)| — |E(B) ( )
P

Now putting both bounds together and using the fact that (A, (M) fII* it is easy to
see that the inequality follows. O

We will apply this result to prove measure concentration of certain subsets of graphs. We
first consider the growth of a set X C V in steps. Given r > 0 we let

X(ry={veV:dv,X)<r}

We use the normalized counting measure on V, that is, for a set S C V, u(S) = |S|/|V]. We
note that if e € E(X,V \ X) then e € E(X, X (1) \ X). If in X(1) \ X each vertex has degree
at most d then clearly we have

X\ X] > 2[BOG X\ X)] = 5|B(X VX))

Now applying the previous theorem we get

(D) X[V X
d Vi

X()\X] 2 gBXX, VX)) 2

and dividing both side by |V| we get

p(x () %) = 28001 - ().

Since (X (1) \ X) = p(X (1)) — u(X) we get




Now assuming 1(X) < 1/2 we obtain the following inequality

ux) = (14 242 i)

which means that X grows at a minimum rate 1 + A\;(A)/2d while it has sufficiently small
measure.



