High-Dimensional Measures and Geometry
 Lecture Notes from April 29, 2010
 taken by ALI S. KAVRUK

Last time we have shown that if $\mu(X) \leq 1 / 2$ then we have the following inequality

$$
\mu(X(1)) \geq\left(1+\frac{\lambda_{1}(\triangle)}{2 d}\right) \mu(X)
$$

which means that X grows at a minimum rate $1+\lambda_{1}(\triangle) / 2 d$. Now by using some iteration we obtain

$$
\mu(X(r+1)) \geq\left(1+\frac{\lambda_{1}(\triangle)}{2 d}\right)^{r+1} \mu(X)
$$

as long as $\mu\left(X_{r}\right) \leq 1 / 2$. Consequently

$$
\mu(X) \leq\left(1+\frac{\lambda_{1}(\triangle)}{2 d}\right)^{-r} \mu(X(r)) \leq \frac{1}{2}\left(1+\frac{\lambda_{1}(\triangle)}{2 d}\right)^{-r}
$$

Now we wish to use this result for measure concentration.
Note: If $X=V \backslash Y(r)$ for some $Y \subseteq V$ then

$$
X=\{v \in V: d(v, Y)>r\}
$$

We claim that $X(r) \cap Y=\emptyset$ This is because $v \in X(r)$ iff $d(v, X) \leq r$. But if $v \in Y$ then $d(v, X) \geq d(X, Y)>r$. So $v \notin Y$.

Now by going to complements, if $Y \subseteq V$ with $\mu(Y) \geq 1 / 2$ and $X=V \backslash Y(r)$ then $X(r) \subseteq V \backslash Y$ and $\mu(X(r)) \leq 1 / 2$. Thus

$$
\mu(Y) \geq \frac{1}{2} \Rightarrow \mu(X)=\mu(\{v \in V: d(v, Y)>r\}) \leq \frac{1}{2}\left(1+\frac{\lambda_{1}(\triangle)}{2 d}\right)^{-r} .
$$

Recall that for I_{n}, if we define

$$
B=\left\{v \in I_{n}: \sum_{i=1}^{n} v_{i} \leq n / 2\right\}
$$

then we know

$$
\mu\left(I_{n} \backslash B(\alpha n)\right)=\mu\left(\left\{x \in I_{n}: f(x)-\frac{n}{2} \geq \alpha n\right\}\right) \leq e^{-2 n \alpha^{2}} e^{C n \alpha^{3}}
$$

We compare this result with $r=\alpha n$,

$$
\mu(\{v \in V: d(v, B)>r\}) \leq \frac{1}{2}\left(1+\frac{1}{n}\right)^{-r} \leq \frac{1}{2} e^{-r / n}=\frac{1}{2} e^{-\alpha} .
$$

Clearly the estimation above is better. However we can improve this estimation.
0.0.1 Theorem. Let $G=(V, E)$ be a connected graph, $X \subseteq V$ be a set and $\operatorname{deg}(v) \leq d$ for all v in V. Then for every $r \geq 1$, if $\mu(X(r)) \leq 1 / 2$, we have

$$
\mu(X(r)) \geq\left(1+\frac{\lambda_{1}(\triangle)}{2 d} r^{2}\right) \mu(X) .
$$

Proof. We apply the preceding edge-count estimate to $X=A, B=V \backslash X(r)$, then $E \backslash(E(A) \cup$ $E(B))$ "connects" between X and $V \backslash X(r)$. Thus

$$
|X(r) \backslash X| \geq \frac{1}{d}(E-E(X)-E(V \backslash X(r))) \geq \frac{\lambda_{1}(\triangle) r^{2}}{d} \frac{|X||V \backslash X(r)|}{|X|+|V \backslash X(r)|}
$$

However,

$$
\frac{|V \backslash X(r)|}{|X|+|V \backslash X(r)|}=\left(1+\frac{|X|}{|V \backslash X(r)|}\right)^{-1}=\left(1+\frac{\frac{|X|}{|V|}}{\frac{|V \backslash X(r)|}{|V|}}\right)^{-1}=\left(1+\frac{\mu(X)}{\mu(V \backslash X(r))}\right)^{-1}
$$

now considering $\mu(X) \leq 1 / 2$ and $\mu(V \backslash X(r))=1-\mu(X(r)) \geq 1 / 2$ we obtain that the latter expression on the above is greater than or equal $1 / 2$. Hence we have

$$
|X(r) \backslash X| \geq \frac{\lambda_{1}(\triangle) r^{2}}{d} \frac{|X|}{2}
$$

equivalently,

$$
|X(r)| \geq \frac{\lambda_{1}(\triangle) r^{2}}{d} \frac{|X|}{2}+|X|=\left(1+\frac{\lambda_{1}(\triangle)}{2 d} r^{2}\right)|X| .
$$

Thus

$$
\mu(X(r)) \geq\left(1+\frac{\lambda_{1}(\triangle)}{2 d} r^{2}\right) \mu(X) .
$$

As before, we conclude that if $Y \subseteq V$ with $\mu(Y) \geq 1 / 2$ and $X=V \backslash Y(r)$, then $\mu(X(r)) \leq$ $1 / 2$ and

$$
\mu(\{v \in V: d(v, Y)>r\}) \leq \frac{1}{2}\left(1+\frac{\lambda_{1}(\triangle)}{2 d} r^{2}\right)^{-1} .
$$

This estimation doesn't seem to be as good as what we had, at least for large r. But, if $\lambda_{1} r / d$ is small then

$$
\left(1+\frac{\lambda_{1}}{d}\right)^{r} \cong 1+\frac{\lambda_{1} r}{2 d}<1+\frac{\lambda_{1} r^{2}}{2 d} .
$$

So this new bound is better. We iterate the bound to get good estimates when r is large.
0.0.2 Corollary. Let $G=(V, E)$ be a connected graph such that $\operatorname{deg}(v) \leq d$ for all v in V. Let $A \subseteq V$ be a set with $\mu(A)>1 / 2$. Then for any $t \in \mathbb{N}$

$$
\mu(\{v \in V: d(v, A)>t\}) \leq \frac{1}{2}\left(1+\frac{\lambda_{1}(\triangle) r^{2}}{2 d}\right)^{-\lfloor t / r\rfloor}
$$

Proof. Take $B=V \backslash A(t)$. Again $B(t) \subseteq V \backslash A$ and thus $\mu(B(t)) \leq 1 / 2$. Take $s=\lfloor t / r\rfloor$ and construct a sequence

$$
X_{0}=B, \quad X_{1}=X_{0}(r), \quad X_{2}=X_{1}(r), \ldots, X_{k}=X_{k-1}(r) \text { for } k \leq s
$$

Then $X_{s}=B(r s) \subseteq B(t)$. So $\mu\left(X_{k}\right) \leq 1 / 2$ for $k=0,1,2, \ldots, s$. Now using our refined estimate we have

$$
\frac{1}{2} \geq \mu\left(X_{s}\right) \geq\left(1+\frac{\lambda_{1}(\triangle) r^{2}}{2 d}\right)^{s} \mu(B)
$$

or

$$
\mu(B) \leq \frac{1}{2}\left(1+\frac{\lambda_{1}(\triangle) r^{2}}{2 d}\right)^{-s} .
$$

