MATH 4331 Introduction to Real Analysis Fall 2013

First name:	Last name:	Points:
-------------	------------	---------

Assignment 7, due Thursday, November 7, 10am

Please staple this cover page to your homework. When asked to prove something, make a careful step-by-step argument. You can quote anything we covered in class in support of your reasoning.

Problem 1

Prove that the only connected sets in \mathbb{Q} , when equipped with the usual metric, are the sets containing only a single point or the empty set.

Problem 2

Let \mathbb{R} and \mathbb{Q} be equipped with the usual metric. Prove that if $f : \mathbb{R} \to \mathbb{Q}$ is continuous, then f is constant.

Problem 3

Prove that if a metric space (X, d) is pathwise connected, then (X, d) is connected.

Problem 4

Def. Let $g : [a, b] \to \mathbb{R}$. By the **graph of g** we mean the set $G = \{(x, g(x)) : a \le x \le b\} \subseteq \mathbb{R}^2$. Let $g : [a, b] \to \mathbb{R}$. Prove that g is continuous if and only if the graph of g is a pathwise connected subset of the plane.