Introduction to Real Analysis

Fall 2013

First name: \qquad Last name: \qquad Points:

Assignment 9, due Thursday, December 5, 10am

Please staple this cover page to your homework. When asked to prove something, make a careful step-by-step argument. You can quote anything we covered in class in support of your reasoning.

Problem 1

Let $f(x)=x^{2}$. Compute the upper and lower Riemann sums for the intervals $[0,1]$ and the partition P_{n} with $x_{0}=0, x_{j}=\frac{j}{n}, x_{n}=1$, and show directly that f is Riemann integrable by evaluating the limits of the upper and lower sums. You may use the identity

$$
\sum_{j=1}^{n} j^{2}=\frac{n(n+1)(2 n+1)}{6}
$$

Problem 2

Let

$$
f(x)=\operatorname{sgn}\left(\sin \left(\frac{\pi}{x}\right)\right) \text { if } x \neq 0 \text { and } f(0)=0
$$

where

$$
\operatorname{sgn}(x)=1 \text { if } x>0, \quad \operatorname{sgn}(x)=-1 \text { if } x<0 \text { and } \operatorname{sgn}(0)=0
$$

Show that f is Riemann integrable on the interval $[0,1]$.

Problem 3

Let $\alpha:[a, b] \rightarrow \mathbb{R}$ be an increasing function and let $f:[a, b] \rightarrow \mathbb{R}$ be a bounded function. If $m=\inf \{f(x): a \leq x \leq b\}$ and $M=\sup \{f(x): a \leq x \leq b\}$, then prove that $m(\alpha(b)-\alpha(a)) \leq$ $\int_{a}^{b} f d \alpha \leq \bar{\int}_{a}^{b} f d \alpha \leq M(\alpha(b)-\alpha(a))$. You may quote results from class to support your argument.

Problem 4

Let $\alpha:[-2,2] \rightarrow \mathbb{R}$ be the function associated with the coin flip, $\alpha(x)=0$ if $x<-1, \alpha(x)=p$ if $-1 \leq x<1$ and $\alpha(x)=1$ if $x \geq 1$. Compute $\mu=\int_{-2}^{2} x d \alpha(x)$ and $\sigma^{2}=\int_{-2}^{2}(x-\mu)^{2} d \alpha(x)$.

