University of Houston

Department of Mathematics

MATH 4331

Introduction to Real Analysis

Fall 2015

First name: Last name:

Points:

Assignment 8, due Thursday, November 5, 2:30pm

Please staple this cover page to your homework. When asked to prove something, make a careful step-by-step argument. You can quote anything we covered in class in support of your reasoning.

Problem 1

Let w be a real-valued, strictly positive continuous function on the interval [a, b]. Show that for f, $g \in C([a, b])$, $\langle f, g \rangle_w = \int_a^b f(x)g(x)w(x)dx$ defines an inner product on C([a, b]).

Problem 2

Let c_0 be the vector space of all convergent sequences $x = \{x_n\}_{n=1}^{\infty}$ in \mathbb{R} with $\lim_{n\to\infty} x_n = 0$. Let $\|x\|_{\infty} = \sup_{n\in\mathbb{N}} |x_n|$.

- a. Show that for $x \in c_0$ there is $k \in \mathbb{N}$ such that $|x_k| = ||x||_{\infty}$.
- b. Show that $\|\cdot\|_{\infty}$ defines a norm on c_0 .

Problem 3

Let c_0 be the normed space from the preceding problem. Consider a Cauchy sequence $\{x_k\}_{k=1}^{\infty}$ in c_0 whose elements are denoted by $x_k = \{x_{k,n}\}_{n=1}^{\infty}$.

- a. Show that for each fixed $n \in \mathbb{N}$, $\{x_{k,n}\}_{k=1}^{\infty}$ is Cauchy in \mathbb{R} .
- b. Deduce that the limit $y_n = \lim_{k \to \infty} x_{k,n}$ defines $y = \{y_n\}_{n=1}^{\infty}$ with $\|y\|_{\infty} < \infty$.
- c. Show that $\lim_{k\to\infty}\|x_k-y\|_\infty=0$
- d. Conclude that y belongs to c_0 and thus c_0 is complete.

Problem 4

If $f \in C([0,1])$ and $1 \le r \le s < \infty$, show that $||f||_1 \le ||f||_r \le ||f||_s \le ||f||_\infty$. Hint: Use Hölder's inequality with g(x) = 1 and exponent p = s/r. Hence, show that if $\{f_n\}_{n=1}^{\infty}$ in C([0,1]) converges uniformly to $f \in C([0,1])$, then the sequence also converges with respect to $\|\cdot\|_p$ for $1 \le p < \infty$.