MATH 4331
 Introduction to Real Analysis

Fall 2015
First name: \qquad Last name: \qquad Points:

Assignment 8, due Thursday, November 5, 2:30pm

Please staple this cover page to your homework. When asked to prove something, make a careful step-by-step argument. You can quote anything we covered in class in support of your reasoning.

Problem 1

Let w be a real-valued, strictly positive continuous function on the interval $[\mathrm{a}, \mathrm{b}]$. Show that for $f, g \in C([a, b]),\langle f, g\rangle_{w}=\int_{a}^{b} f(x) g(x) w(x) d x$ defines an inner product on $C([a, b])$.

Problem 2

Let c_{0} be the vector space of all convergent sequences $x=\left\{x_{n}\right\}_{n=1}^{\infty}$ in \mathbb{R} with $\lim _{n \rightarrow \infty} x_{n}=0$. Let $\|x\|_{\infty}=\sup _{n \in \mathbb{N}}\left|x_{n}\right|$.
a. Show that for $x \in c_{0}$ there is $k \in \mathbb{N}$ such that $\left|x_{k}\right|=\|x\|_{\infty}$.
b. Show that $\|\cdot\|_{\infty}$ defines a norm on c_{0}.

Problem 3

Let c_{0} be the normed space from the preceding problem. Consider a Cauchy sequence $\left\{x_{k}\right\}_{k=1}^{\infty}$ in c_{0} whose elements are denoted by $x_{k}=\left\{x_{k, n}\right\}_{n=1}^{\infty}$.
a. Show that for each fixed $n \in \mathbb{N},\left\{\chi_{k, n}\right\}_{k=1}^{\infty}$ is Cauchy in \mathbb{R}.
b. Deduce that the limit $y_{n}=\lim _{k \rightarrow \infty} x_{k, n}$ defines $y=\left\{y_{n}\right\}_{n=1}^{\infty}$ with $\|y\|_{\infty}<\infty$.
c. Show that $\lim _{k \rightarrow \infty}\left\|x_{k}-y\right\|_{\infty}=0$
d. Conclude that y belongs to c_{0} and thus c_{0} is complete.

Problem 4

If $f \in C([0,1])$ and $1 \leq r \leq s<\infty$, show that $\|f\|_{1} \leq\|f\|_{r} \leq\|f\|_{s} \leq\|f\|_{\infty}$. Hint: Use Hölder's inequality with $g(x)=1$ and exponent $p=s / r$. Hence, show that if $\left\{f_{n}\right\}_{n=1}^{\infty}$ in $C([0,1])$ converges uniformly to $f \in C([0,1])$, then the sequence also converges with respect to $\|\cdot\|_{p}$ for $1 \leq p<\infty$.

