Practice Exam 2 - Math 4331/6312
 November, 2015

First name: \qquad Last name: \qquad Last 4 digits student ID: \qquad

1 True-False Problems

Put T beside each statement that is true, F beside each statement that is false.

1. If f is bounded and Riemann integrable on $[a, b]$, then $f^{2}, f^{2}(x)=(f(x))^{2}$ is Riemann integrable on $[a, b]$.
2. If f is bounded and Riemann integrable on $[a, b]$ and $0 \leq g(x) \leq f(x)$ for each $x \in[a, b]$, then g is Riemann integrable on $[a, b]$.
3. For an interval $[a, b]$, the set of bounded Riemann integrable functions on $[a, b]$ forms a vector space.
4. If f is bounded and integrable on $[a, b]$, then

$$
\lim _{h \rightarrow 0} \frac{1}{h} \int_{a}^{a+h} f(x) d x
$$

exists.
5. An inner product $\langle x, y\rangle$ is zero if and only if one of the vectors x or y is zero.
6. Equality holds in the triangle inequality on normed vector spaces if and only if the vectors are collinear.
7. A compact subset of a normed vector space is complete.
8. Any bounded sequence in a normed vector space has a convergent subsequence.

In the following problems, you may quote statements from class to simplify your answers. You do not need to give a proof of a statement if it was discussed in class.

2 Problem

Show that if f is bounded and Riemann integrable on $[a, b]$ and $f \geq 0$, then $F(x)=\int_{a}^{x} f(t) d t$ defines a non-decreasing function on $[a, b]$.

3 Problem

Let $C^{1}([0,1])$ denote the vector space of functions on $[0,1]$ that are continuously differentiable. Show that for $f \in C^{1}([0,1])$,

$$
\|f\|=\int_{0}^{1}\left|f^{\prime}(x)\right| d x+|f(0)|
$$

defines a norm

4 Problem

Let $\left\{f_{n}\right\}_{n=1}^{\infty}$ be the sequence of functions on $[0,2]$ defined by

$$
f_{n}(x)= \begin{cases}n, & 1 / n \leq x \leq 2 / n \\ 0, & \text { else }\end{cases}
$$

Show that this sequence converges pointwise to the zero function. Show that it does not converge in the L^{p}-norm for any $1 \leq p<\infty$.

5 Problem

Suppose that f is uniformly continuous on \mathbb{R}. Let $f_{n}(x)=f(x+1 / n)$. Show that f_{n} converges uniformly to f.

6 Problem

Show that f is Lipschitz continuous on $[0,1]$ with Lipschitz constant L, then

$$
\left|\int_{0}^{1} f(x) d x-\frac{1}{n} \sum_{j=1}^{n} f(j / n)\right| \leq L / n .
$$

