MATH 4332

Introduction to Real Analysis
 Spring 2016

First name: \qquad Last name: \qquad

Points:

Assignment 7, due Thursday, April 14, 2:30pm

Please staple this cover page to your homework. When asked to prove something, make a careful step-by-step argument. You can quote anything we covered in class in support of your reasoning.

Problem 1

Show that if f is a continuous function on $[0,1]$ such that $\int_{0}^{1} f(x) x^{n} d x=0$ for each integer $n \geq 0$, then $f \equiv 0$. Hint: Recall that if $\left\{g_{n}\right\}$ is a uniformly convergent sequence in $C([0,1])$ with limit g, then $\lim _{n \rightarrow \infty} \int_{0}^{1} g_{n}(x) d x=\int_{0}^{1} g(x) d x$. Use this idea to first prove $\int_{0}^{1}|f(x)|^{2} d x=0$ and then deduce $f \equiv 0$.

Problem 2

1. If $x_{0}, x_{1}, \ldots x_{n}$ are distinct points in $[a, b]$ and $a_{0}, a_{1}, \ldots a_{n}$ are in \mathbb{R}, show that there is a unique polynomial p_{a} of degree at most n such that $p_{a}\left(x_{j}\right)=a_{j}$ for each j. Hint: Find polynomials q_{j} such that $q_{j}\left(x_{k}\right)=0$ for each $k \neq j$ and $q_{j}\left(x_{j}\right)=1$. You may express them in factorized form.
2. Next, show that there is a constant M such that for all $a,\left\|p_{a}\right\|_{\infty} \leq M\|a\|_{2}$.

Problem 3

Suppose that $f \in C\left([a, b], \epsilon>0\right.$ and $x_{1}, x_{2}, \ldots x_{n}$ are points in $[a, b]$. Prove that there is a polynomial p such that $p\left(x_{i}\right)=f\left(x_{i}\right)$ and $\|f-p\|_{\infty}<\epsilon$. Hint: First approximate f closely by some polynomial of sufficiently high degree, then use the result of the previous problem to adjust this approximation.

Problem 4

If $f \in C([-1,1])$ is an even (odd) function, then show that the best approximation among the polynomials of degree n is also even (odd).

Problem 5

Assume $f \in C([a, b])$ is twice continuously differentiable and $f^{\prime \prime}(x)>0$ on $[a, b]$. Show that the best linear approximation (a polynomial of degree one) p to f has the slope $p^{\prime}(x)=(f(b)-f(a)) /(b-a)$.

