MATH 4332 Introduction to Real Analysis Spring 2016

 First name:

 Points:

Assignment 7, due Thursday, April 14, 2:30pm

Please staple this cover page to your homework. When asked to prove something, make a careful step-by-step argument. You can quote anything we covered in class in support of your reasoning.

Problem 1

Show that if f is a continuous function on [0,1] such that $\int_0^1 f(x)x^n dx = 0$ for each integer $n \ge 0$, then $f \equiv 0$. Hint: Recall that if $\{g_n\}$ is a uniformly convergent sequence in C([0,1]) with limit g, then $\lim_{n\to\infty} \int_0^1 g_n(x) dx = \int_0^1 g(x) dx$. Use this idea to first prove $\int_0^1 |f(x)|^2 dx = 0$ and then deduce $f \equiv 0$.

Problem 2

- 1. If x_0, x_1, \ldots, x_n are distinct points in [a, b] and a_0, a_1, \ldots, a_n are in \mathbb{R} , show that there is a unique polynomial p_a of degree at most n such that $p_a(x_j) = a_j$ for each j. Hint: Find polynomials q_j such that $q_j(x_k) = 0$ for each $k \neq j$ and $q_j(x_j) = 1$. You may express them in factorized form.
- 2. Next, show that there is a constant M such that for all a, $||p_a||_{\infty} \leq M ||a||_2$.

Problem 3

Suppose that $f \in C([a, b], \epsilon > 0 \text{ and } x_1, x_2, \dots, x_n \text{ are points in } [a, b]$. Prove that there is a polynomial p such that $p(x_i) = f(x_i)$ and $||f - p||_{\infty} < \epsilon$. Hint: First approximate f closely by some polynomial of sufficiently high degree, then use the result of the previous problem to adjust this approximation.

Problem 4

If $f \in C([-1,1])$ is an even (odd) function, then show that the best approximation among the polynomials of degree n is also even (odd).

Problem 5

Assume $f \in C([a, b])$ is twice continuously differentiable and f''(x) > 0 on [a, b]. Show that the best linear approximation (a polynomial of degree one) p to f has the slope p'(x) = (f(b) - f(a))/(b-a).