UNIVERSITY OF HOUSTON PRACTICE MIDTERM EXAMINATION

Term: Spring Year: 2009

Marking Scheme:

Question	Points	Score
1	20	
2	20	
3	20	
4	20	
5	20	
Total	100	

1. (20 points) For two vectors $x=\left(x_{1}, x_{2}\right)$ and $y=\left(y_{1}, y_{2}\right)$ in \mathbb{R}^{2}, let us define a new "dot" product with extra terms,

$$
\langle\langle x, y\rangle\rangle=x_{1} y_{1}+x_{1} y_{2}+x_{2} y_{1}+x_{2} y_{2} .
$$

(a) For any $x=\left(x_{1}, x_{2}\right)$, compute $\langle\langle x, x\rangle\rangle$. Determine for which x_{1} and x_{2} we obtain $\langle\langle x, x\rangle\rangle=0$.
(b) Does $\langle\langle\cdot, \cdot\rangle\rangle$ define an inner product on \mathbb{R}^{2} ? Why/why not?
2. (20 points) Let $\left\{f_{n}\right\}_{n=1}^{\infty}$ be a sequence of functions on $[0,1]$ given by

$$
f_{n}(x)=x^{n}
$$

(a) Show that $f_{n} \rightarrow 0$ in the norm of $L^{2}([0,1])$ as $n \rightarrow \infty$.
(b) Find the point-wise limit $f(x)=\lim _{n \rightarrow \infty} f_{n}(x)$ for each fixed $x \in[0,1]$.
(c) Does the sequence converge uniformly? Why/why not?
3. (25 points) Let V_{N} be the sub-space of $L^{2}([0, \pi])$ spanned by the set $\left\{e_{1}, e_{2}, \ldots e_{N}\right\}$, where

$$
e_{k}(x)=\sqrt{\frac{2}{\pi}} \sin (k x) .
$$

(a) Show that e_{n} and e_{m} are orthogonal for all $n \neq m$ and show that $\left\|e_{n}\right\|^{2}=1$ for all n.
(b) Given $f(x)=1$, express the orthogonal projection \hat{f} of f onto V_{N} in terms of a linear combination of $e_{1}, e_{2}, \ldots e_{N}$.
(c) Let $N=4$. Compute the value $\hat{f}(x)$ for $x \in[0, \pi]$.
4. (20 points) Consider the function $f(x)=e^{x}+e^{-x}$ on $x \in[-\pi, \pi)$.
(a) (15 points) Find the Fourier coefficients a_{k} and b_{k} (real form of the Fourier series) for f.
(b) (5 points) Sketch three periods of the function to which the Fourier series converges.
5. (20 points) The function $f(x)=\frac{1}{12}\left(\pi^{2}-3 x^{2}\right)$ on the interval $[-\pi, \pi]$ has the Fourier series with partial sums

$$
S_{N}(x)=\sum_{k=1}^{N}(-1)^{k+1} \frac{\cos (k x)}{k^{2}}
$$

(a) State for which $x \in[-\pi, \pi]$ the sequence $S_{N}(x)$ converges to $f(x)$.
(b) Use the preceding part of this problem, by choosing an appropriate x, to show

$$
\sum_{k=1}^{\infty} \frac{1}{k^{2}}=\frac{\pi^{2}}{6}
$$

Trig formulas

$$
\begin{gathered}
\sin (\alpha \pm \beta)=\sin (\alpha) \cos (\beta) \pm \cos (\alpha) \sin (\beta) \\
\cos (\alpha \pm \beta)=\cos (\alpha) \cos (\beta) \mp \sin (\alpha) \sin (\beta) \\
\sin ^{2}(\alpha)=\frac{1}{2}-\frac{1}{2} \cos (2 \alpha) \\
\cos ^{2}(\alpha)=\frac{1}{2}+\frac{1}{2} \cos (2 \alpha)
\end{gathered}
$$

[empty page]

