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Chapter 1

Inner Product Spaces

Defining properties and examples

1.1 Definition. An inner product for a complex vector space V is a func-

tion �·, ·� : V × V → C which is sesqui-linear and positive definite. This

means, it has the following properties:

1. �v, w� = �w, v� for all v, w ∈ V ;

2. �cv, w� = c�v, w� for all v, w ∈ V and c ∈ C;

3. �u + v, w� = �u,w�+ �v, w� for all u, v, w ∈ V ;

4. �v, v� > 0 for all v ∈ V , v �= 0.

When a vector space V has been equipped with an inner product, we also refer

to it as an inner product space. We also define the norm �v� =
�
�v, v�

for all v ∈ V . A sequence {vn}n∈N converges to a vector w in norm if

limn→∞ �vn − w� = 0.

1.2 Example. The vector space of all trigonometric polynomials, given by
the set of functions

V =

�
p : [0, 1] → C, p(t) =

N�

k=−N

cke
2πikt

, N ∈ N, all ck ∈ C
�

(1.1)

can be equipped with the inner product

�v, w� =
� 1

0
v(t)w(t) dt . (1.2)
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The sesqui-linearity (Properties 1 to 3) follows from the linearity of the
integral. To check the positive definiteness, we compute the square norm for
a trigonometric polynomial v(t) =

�N
k=−N cke

2πikt with degree 2N + 1 ∈ N,

�v, v� =
� 1

0
|v(t)|2 dt

=
� 1

0

N�

k=−N

cke
2πikt

N�

l=−N

cle
−2πilt

dt

=
N�

k,l=−N

ckcl

� 1

0
e
2πi(k−l)t

dt =
N�

k=−N

|ck|2 .

The last sum is zero if and only if ck = 0 for all k ∈ {−N,−N + 1, . . . , N −
1, N}, which means that v(t) = 0 for all t ∈ [0, 1].

The example of trigonometric polynomials is a vector space that does
not have a finite basis, that is, a finite, linearly independent set for which
finite linear combinations can produce any vector in V . This is a simple
consequence of the fact that a finite set of trigonometric polynomials has a
maximal degree. Any monomial with a higher degree cannot be obtained
from a linear combination within this set.

1.3 Exercise. Recall the Cauchy property of sequences. A Cauchy sequence
{vn}n∈N in a normed vector space satisfies that for any � > 0 there is an
N ∈ N such that for all m, n > N , �vn − vm� < �. Show that the space of
trigonometric polynomials is not closed, that is, there are sequences of poly-
nomials which have the Cauchy property with respect to the norm induced
by the inner product, but they do not converge to a polynomial.

To remedy this problem, one could identify each polynomial with the
(finite) sequence of its coefficients, and define an inner product in terms of
the coefficients. This way, polynomials are embedded in the larger space of
square-summable sequences. We will show in Exercise 1.10 that all Cauchy
sequences converge in this larger space.

1.4 Example. Let l
2(Z) be the vector space of all sequences (xn)n∈Z with�∞

k=−∞ |xn|2 < ∞. For x, y ∈ l
2(Z), we define

�x, y� =
∞�

n=−∞
xnyn .

We also denote �x� =
�
�x, x�.
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To see that the inner product is indeed defined on all pairs of vectors
from l

2(Z), we note that for x, y ∈ l
2(Z), the series for the inner product is

term by term dominated by an absolutely convergent series,
�����

∞�

k=−∞
xkyk

����� ≤
∞�

k=−∞
|xkyk| ≤

∞�

k=−∞

�
1
2
|xk|2 +

1
2
|yk|2

�
.

Thinking of a trigonometric polynomial as a sequence of coefficients,
finitely many of which are nonzero, motivates to consider ‘functions’ cor-
responding to sequences of coefficients which are merely square-summable.
Such functions could then be thought of as limits of Cauchy sequences of
trigonometric polynomials (obtained from truncating the coefficients). The
question of whether these limits can indeed be interpreted as functions, and
in which precise sense they are limits of trigonometric polynomials is the cen-
tral theme of the next chapter on Fourier series. Writing the inner product
for these limits in the same form as for trigonometric polynomials motivates
the informal definition of L

2([0, 1]), the space of square-integrable functions
on [0, 1]. We can make this definition more general by using complex expo-
nentials of the form e

2πint/(b−a), and obtain the space of square-integrable
functions on an interval [a, b].

1.5 Definition. Let a, b ∈ R, a < b, then we define the vector space of

square-integrable functions

L
2([a, b]) =

�
f : [a, b] → C, f(t) =

∞�

k=−∞
cke

2πikt/(b−a)
, c ∈ l

2(Z)

�

and for two such square-integrable functions f and g, we write

�f, g� =
� b

a
f(t)g(t)dt .

1.6 Remark. This cannot define an inner product for functions, because if
f(a) = 1, f(t) = 0 for all a < t ≤ b, then we have �f, f� = 0 but f is
not the zero function! However, one can show that the inner product space
obtained from Cauchy sequences of trigonometric polynomials amounts to
identifying two functions when they differ on a set that does not contribute
in an integral. In this case, we say that the two functions are equal almost

everywhere.
1.7 Example. Sets that do not contribute in integrals are those that can be
covered with an at most countable number of intervals having a total length
that can be made arbitrarily small.
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One example is the set Q containing all rational numbers. Since these
numbers are countable, we can enumerate them with a sequence {qn}n∈N.
Given � > 0, choosing intervals of length 2−n centered at each qn covers the
rationals, and the total length of all intervals is

�∞
j=1 �/2n = �. In fact, this

construction applies to any countable set, which shows that none of them
contribute in integrals.

Another example is the so-called Cantor set. It is given as an intersection
of countably many sets obtained from an iterative procedure. The first
set is C1 = [0, 1]. The next is obtained by removing the middle third,
C2 = [0, 1/3]∪ [2/3, 1]. At each step, we remove the middle third. The total
length of the intervals contained in Cn is thus (2/3)n−1, which converges to
zero. Each number in C = ∩∞n=1Cn is uniquely determined by the infinite
sequence of binary decisions keeping track of which “third” (left or right)
contains the number when passing from Cn−1 to Cn. Therefore, the set C

is not countable, as proved by Cantor’s diagonal argument. If they were,
we could write the binary sequences underneath each other, and then create
another sequence by picking the numbers on the diagonal. Switching all “0”s
and “1”s then creates a sequence that is different from all of the enumerated
ones, thus the enumeration cannot contain all binary sequences.

The space of sequences can be thought of as the space of digitized signals,
given by coefficients stored in a computer. The space of square-integrable
functions, on the other hand, can be thought of as the space of analog
signals. By identifying trigonometric polynomials with their sequences of
coefficients, we have tacitly introduced a map between analog and digital
signals which is compatible with the inner products on both spaces. We will
investigate this map more closely.

Inequalities

Two fundamental inequalities that hold on inner product spaces are the
Cauchy-Schwarz inequality and the triangle inequality.

1.8 Theorem. If V is a vector space with inner product �·, ·�, then for all

x, y ∈ V

|�x, y�| ≤ �x��y� . (1.3)

1.9 Theorem. If V is a vector space with inner product �·, ·�, then for all

x, y ∈ V ,

�x + y� ≤ �x�+ �y� . (1.4)
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1.10 Exercise. Show that each Cauchy sequence in l
2(Z) converges in norm

to a square-summable sequence.

Orthogonality and basis expansions

1.11 Definition. Let V be a vector space with an inner product. We say

that two vectors x, y ∈ V are orthogonal, abbreviated x ⊥ y, if �x, y� = 0. A

set {e1, e2, . . . eN} is called orthonormal if �ei� = 1 and �ei, ej� = 0 for all

i �= j. We abbreviate this with Kronecker’s δ-symbol as �ei, ej� = δi,j. We

then call {e1, e2, . . . eN} an orthonormal basis for its linear span. Given an

infinite orthonormal set {en}n∈Z, we say that it is an orthonormal basis for

all vectors that are obtained from summing the basis vectors with a square-

summable sequence of coefficients. Finally, two subspaces V1, V2 are called

orthogonal, abbreviated V1 ⊥ V2, if all pairs (x, y) with x ∈ V1 and y ∈ V2

are orthogonal.

1.12 Example. Let V0 be the complex subspace of L
2([−π, π]) given by

V0 = {f(x) = c1 cos x + c2 sin x for c1, c2 ∈ C} .

Then the set {e1, e2},

e1(x) =
1√
π

cos x and e2(x) =
1√
π

sin x ,

is an orthonormal basis for V0. Strictly speaking, a vector in this subspace
specified by c1 and c2 is not the function

f(x) = c1 cos x + c2 sin x

but the equivalence class of all functions that are equal to f for almost every
x ∈ [−π, π]. However, to simplify notation, we will take the liberty to speak
of each function as if it were the vector given by its equivalence class.

Another subspace of of L
2([0, 1]) is the space of functions which are

almost everywhere constant on [0, 1/2) and [1/2, 1]. It has the orthonormal
basis {φ, ψ} with

φ(x) = 1 and ψ(x) =
�

1, 0 ≤ x < 1/2
−1, 1/2 ≤ x ≤ 1

The normalization is straightforward to check. The orthogonality can be
verified by splitting the domain of the integral in the inner product,

� 1

0
φ(t)ψ(t)dt =

� 1/2

0
1dt +

� 1

1/2
(−1)dt = 0 .
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1.13 Theorem. Let V0 be a subspace of an inner product space V , and

{e1, e2, . . . eN} an orthonormal basis for V0. Then for all v ∈ V0,

v =
N�

k=1

�v, ek�ek .

Proof. Since {ek}N
k=1 is a basis for V0 as a vector space, we can write

v =
N�

k=1

αkek

with some unique choice of coefficients {αj}N
j=1. In order to isolate the value

of each coefficient, we take the inner product with ek, k ∈ {1, 2, . . . N}, on
each side of this identity, and use the linearity of the inner product as well
as the orthonormality of the basis,

�v, ek� =
N�

l=1

αl�el, ek� = αk .

Orthogonal projections

1.14 Question. What is the result

v̂ =
N�

k=1

�v, ek�ek

if v �∈ V0?

1.15 Theorem. Let V0 be an inner product space, V0 an N -dimensional

subspace with an orthonormal basis {e1, e2, . . . eN}. Then for v ∈ V ,

v̂ =
N�

j=1

�v, ek�ek

satisfies

�v − v̂, w0� = 0

for all w0 ∈ V0.
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Proof. Since w0 =
�N

k=1 βjek with some coefficients {βk}N
k=1 and the inner

product is linear, we only need to check that for all indices k,

�v − v̂, ek� = 0 .

This is true because of orthonormality of the basis,

�v −
N�

l=1

�v, el�el, ek� = �v, ek� −
N�

l=1

�v, el��el, ek� = 0 .

Since the difference vector v − v̂ is orthogonal to V0, we call v̂ the or-

thogonal projection of v onto V0.

1.16 Exercise. Let φ and ψ be the functions in L
2([0, 1]) as defined in Ex-

ample 1.12. Project the function f(x) = x onto the space V0 for which φ

and ψ form an orthonormal basis.

If a vector x in an inner product space V is perpendicular to all y ∈ V0,
we write y ⊥ V0 or y ∈ V

⊥
0 .

1.17 Theorem. Let V0 be a finite dimensional subspace of an inner product

space V . Then each v ∈ V has a unique way of being expressed as

v = v0 + v1 ,

where v0 ∈ V0 and v1 ⊥ V0. We write V = V0 ⊕ V
⊥
0 .

Proof. Take v and project orthogonally onto V0. Let v1 = v − v0, then
v = v0 + v1 and v1 ∈ V

⊥
0 by the preceding theorem. Conversely, given v0

and v1 with these properties, then v0 must be the orthogonal projection of
v onto V0.

A least squares algorithm

1.18 Theorem. Let V0 be a finite-dimensional subspace of an inner product

space V . Then for any v ∈ V , its orthogonal projection v̂ onto V0 has the

least-squares property

�v − v̂�2 = min
w∈V0

�v − w�2 .
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Proof. Consider for given w ∈ V0 the square-distance function

f(t) = �v̂ + tw − v�2 , t ∈ R

Since v̂ − v and w are orthogonal,

f(t) = �v̂ + tw − v, v̂ + tw − v�
= �v̂ − v, v̂ − v�+ t

2�w, w�
= �v̂ − v�2 + t

2�w�2

and the minimum is achieved at t = 0. This means that v̂ is the least squares
approximation.

1.19 Theorem. Let V be an inner product space, V0 be a finite-dimensional

subspace spanned by a vector-space basis {z1, z2, . . . zq} Given y ∈ V , then

its orthogonal projection ŷ onto V0 has the unique expansion

ŷ =
q�

k=1

αkzk

with coefficients {αk}q
k=1 which solve the linear system

�y, zl� =
q�

k=1

αk�zk, zl�

for all l ∈ {1, 2, . . . q}.

1.20 Theorem. Let V be an inner product space with finite-dimensional,

mutually orthogonal subspaces V1 and V2. Given y ∈ V , then its orthogonal

projection ŷ onto V1⊕ V2 is ŷ = y1 + y2, where y1 and y2 are the orthogonal

projections onto V1 and V2.

1.21 Remark. This means that introducing an additional subspace V2 that
is orthogonal to V1 improves the approximation of the vector y by summing
its orthogonal projections onto V1 and V2.

There is no need to re-compute the coefficients for the approximation in
V1 when V2 is introduced.
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Chapter 2

Fourier Series

Fourier series as expansion in an orthonormal basis

2.1 Exercise. Given V0 ⊂ L
2([0, π]) which has the orthonormal basis {ej}5

j=1

of functions ej(x) =
�

2
π sin(jx). Compute the projection of the constant

function f(x) = C, C ∈ R, onto V0.

2.2 Theorem. The set {. . . , cos(2x)√
π

,
cos(x)√

π
,

1√
2π

,
sin(x)√

π
,

sin(2x)√
π

, . . . } is an

orthonormal set in L
2([−π, π]).

2.3 Theorem. If a function is given as a series,

f(x) = a0 +
∞�

k=1

(ak cos(kx) + bk sin(kx))

which converges with respect to the norm in L
2([−π, π]), then

a0 =
1
2π

� π

−π
f(x)dx ,

an =
1
π

� π

−π
f(x) cos(nx)dx ,

and

bn =
1
π

� π

−π
f(x) sin(nx)dx .

2.4 Theorem. If f is an even, square integrable function given in the form

of a series as in the preceding theorem, then bn = 0 for all n ∈ N. If f is

odd, then an = 0 for all n ∈ N.
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2.5 Exercise. With the help of a change of variables, y = a + (b− a)x/(2π),
find an expression for the coefficients of

f(x) = a0 +
∞�

k=1

(ak cos(2πkx/(b− a)) + bk sin(2πkx/(b− a))) .

For an integrable function f on [−π, π], one could define the coefficients
{an}∞n=0 and {bn}∞n=1 as in Theorem 2.3. The question is then: Does the
Fourier series with these coefficients converge, and in which sense?

Types of convergence

Identifying vectors in L
2([a, b]) with functions motivates several different

notions of convergence.

2.6 Definition. A sequence {fn}∞n=1 in L
2([a, b]) converges in the square

mean to f ∈ L
2([a, b]) if �fn − f� → 0. The convergence is pointwise if

for all t ∈ [a, b], limn→∞ fn(t) = f(t). It is uniform if

sup
x∈[a,b]

|fn(x)− f(x)|→ 0 .

2.7 Exercise. Find sequences of functions on [0, 1] with either of the following
convergence properties

1. fn → 0 in the square mean, but not pointwise.

2. fn → 0 pointwise, but not in the square mean.

3. fn → 0 pointwise and in the square mean, but not uniformly.

2.8 Exercise. Does the sequence of functions {fn}∞n=1 with values fn(x) =
nx

n
e
−nx for x ∈ R converge uniformly on [−π, π]?

Convergence of Fourier series

2.9 Lemma. If f is piecewise continuous and bounded on [a, b], then

lim
k→∞

� b

a
f(x) cos(kx) dx = lim

k→∞

� b

a
f(x) sin(kx)dx = 0 .
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2.10 Theorem. Assuming f is 2π-periodic, piecewise continuous and bounded,

and f
�(x) exists for some x ∈ [−π, π], then the Fourier series

SN (x) = a0 +
N�

k=1

∞�

k=1

(ak cos(kx) + bk sin(kx))

converges to

lim
N→∞

SN (x) = f(x) .

2.11 Theorem. Assuming f is 2π-periodic, piecewise continuous and bounded,

left and right differentiable at x ∈ [−π, π], then the Fourier series

SN (x) = a0 +
N�

k=1

∞�

k=1

(ak cos(kx) + bk sin(kx))

converges to

lim
N→∞

SN (x) =
1
2
( lim
t→x−

f(t) + lim
t→x+

f(t))

What if we do this for a function f which is only defined on [−π, π],
which is left differentiable at π and right differentiable at −π? The series
then converges to the periodic extension of f .

2.12 Definition. The periodic extension of f defined on [−π, π) is the

function g such that g(x) = f(x) for −π ≤ x < π and g(x + 2π) = g(x) for

all x ∈ R.

2.13 Exercise. Compute the Fourier coefficients for f(x) = x on [−π, π).
verify that at the jump discontinuity, the Fourier series converges to the
average of the left and right hand side limits.

Uniform convergence

2.14 Remark. Since each partial sum of a Fourier series is a trigonometric
polynomial (a continuous function), if the Fourier series converges uniformly,
then the limit is also a continuous function.

This is the motivation for studying uniform convergence.

2.15 Theorem. If the Fourier coefficients {an, bn} of a function satisfy

∞�

n=1

(|an| + |bn|) < ∞

then the series converges uniformly.
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2.16 Corollary. If f is periodic, continuous, twice continuously differen-

tiable on (−π, π) and f
��

is a bounded function,

sup
x∈[−π,π]

|f ��(x)| ≤ M,M > 0

then the Fourier series of f converges uniformly to f .

Convergence in square mean

2.17 Theorem. Let f be square integrable on [−π, π], then the partial sums

of the Fourier series

SN (x) = a0 +
N�

k=1

∞�

k=1

(ak cos(kx) + bk sin(kx))

converge in square mean to f ,

lim
N→∞

� π

−π
|(f − SN )(x)|2dx = 0 .

2.18 Theorem. Let f be square integrable on [−π, π], and

f(x) = a0 +
∞�

k=1

(ak cos(kx) + bk sin(kx))

then we have the equality

1
π

� π

−π
|f(x)|2dx = 2|a0|2 +

∞�

k=1

(|ak|2 + |bk|2) .

In complex notation, if

f(x) =
∞�

k=−∞
αke

ikx

then

1
2π

� π

−π
|f(x)|2dx =

∞�

k=−∞
|αk|2 .

2.19 Corollary. If f and g are square integrable on [−π, π],

f(x) =
∞�

k=−∞
αke

ikx
,
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and

g(x) =
∞�

k=−∞
βke

ikx
,

then

�f, g� = 2π

∞�

k=−∞
αkβk .

Thus, the map from L
2([−π, π]) to l

2(Z) which maps a function f to its
Fourier coefficients preserves inner products.

Gibbs phenomenon

2.20 Exercise. Consider the function

f(x) =
�

π − x, 0 ≤ x ≤ π

−π − x, −π ≤ x < 0 .

1. Compute the Fourier series of f .

2. Denote the Nth partial sum of the Fourier series by SN , and let
gN (x) = SN (x) − f(x). Using the formula for the Dirichlet kernel,
show that g

�
N (x) = sin((N+1/2)x

2π sin(x/2) .

3. Compute the value of gN at the first critical point to the right of x = 0.

4. Express the limit of this value as N →∞ in the form of an integral.

Step-function approximation

2.21 Definition. We call intervals of the form [k2−j
, (k + 1)2−j), j, k ∈ Z

half-open, dyadic intervals. For j ∈ Z, let Vj([0, 1]) denote the space of

functions which are constant on each dyadic interval of length 2−j
contained

in [0, 1]. If we identify each function in Vj([0, 1]) with all the functions

that are almost everywhere equal to it, then we can think of Vj([0, 1]) as a

subspace of L
2([0, 1]).

2.22 Proposition. Let f be a square integrable function on [0, 1]. The

projection Pjf onto Vj([0, 1]), j ∈ {0, 1, 2, . . . } is specified by the values

Pjf(k2−j) = 2j
� (k+1)2−j

k2−j
f(x)dx, 0 ≤ k ≤ 2j − 1 .
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2.23 Remark. The approximation of f by Pjf amounts to piecewise averag-
ing of f on dyadic intervals of a given length. For this reason, there are no
overshoots, and there is no Gibbs phenomenon! The price we pay is that
Pjf is not continuous, unless f is constant.

One could ask if there is a way to preserve smoothness and avoid the
occurrence of the Gibbs phenomenon. We will see a way to approximate
functions by projecting on spaces with a degree of smoothness that can be
chosen to be “between” that of the piecewise constant functions and the ban-
dlimited ones. These approximation spaces will be discussed in the chapter
on multiresolution analysis. Numerical experiments with these approxima-
tions show that an increase in the smoothness of these spaces leads to a
re-emergence of the Gibbs phenomenon.
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Chapter 3

Fourier Transform

Definition and elementary properties

3.1 Fact. If f ∈ L
2(R), then

f̂(ω) = lim
L→∞

1√
2π

� L

−L
f(t)e−iωt

dt

exists for almost all ω ∈ R, that is, up to a set which does not count under
the integral. Moreover, f̂ ∈ L

2(R) and

f(t) = lim
Ω→∞

1√
2π

� Ω

−Ω
f̂(ω)eiωt

dω ,

again, up to a set of t ∈ R which does not count in integrals.

3.2 Theorem (Plancherel). Let f, g ∈ L
2(R). Then denoting F [f ] = f̂ and

F [g] = ĝ, we have

�F [f ], g� = �f, F
−1[g]�

3.3 Corollary. Choosing g = F [h], h ∈ L
2(R), we obtain

�F [f ], F [h]� = �f, F
−1[F [h]]� = �f, h� .

So, we have preservation of the norm and, by the polarization identity, of

the inner product under the Fourier transform,

�F [f ]�2 = �f�2 .

3.4 Proposition. Let f, h ∈ L
2(R), h(t) = f(bt) for b > 0. Then ĥ(ω) =

1
b f̂(ω

b ).
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3.5 Example. If

f(t) =
�

1, −π ≤ t ≤ π

0, else

then h(t) = f(bt) has the Fourier transform

ĥ(ω) =
�

2
π

sin(πω/b)
ω

.

3.6 Proposition. Let f, h ∈ L
2(R), h(t) = f(t− a) for some a ∈ R. Then

ĥ(ω) = e
−iωa

f̂(ω).

3.7 Proposition. Let f ∈ L
2(R). If f is even, then so is f̂ . If f is odd,

then the same holds for f̂ .

Sampling and reconstruction

3.8 Definition. A function f ∈ L
2(R) is called Ω-bandlimited if f̂(ω) = 0

for almost all ω with |ω| > Ω.

3.9 Remark. From Parseval’s identity, f̂ ∈ L
2(R), and by f̂ vanishing outside

of [−Ω,Ω], the inequality |f̂(ω)| ≤ 1
4 + |f̂(ω)|2 implies

� Ω

−Ω
|f̂(ω)|dω ≤

� Ω

−Ω
(
1
4

+ |f̂(ω)|2)dω =
Ω
2

+ �f̂�2 < ∞

which means f̂ is (absolutely) integrable.
A consequence of this fact and the Fourier inversion is that

lim
s→t

f(s) = lim
s→t

1√
2π

� Ω

−Ω
f̂(ω)eiωs

dω =
� Ω

−Ω
f̂(ω)eiωt

dω = f(t) ,

by uniform convergence of e
iωs → e

iωt on [−Ω,Ω]. This means that f , unlike
the usual vectors in L

2(R), can be interpreted as a continuous function.

3.10 Theorem. Let f ∈ L
2(R) be Ω-bandlimited. Then

f(t) =
∞�

k=−∞
f(

kπ

Ω
)
sin(Ωt− kπ)

Ωt− kπ

and the series on the right-hand side converges in the norm of L
2(R) and

uniformly on R.
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