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1 Overview

Syllabus

Department of Mathematics University of Houston
Biostatistics
Math4397/6397
Fall 2008
Class: ‘TuTh 2:30pm-3:50pm, AH 301
Instructor: Bernbard Bodmann, bgb@math.uh.edu
Office: PGH 604; Wed 2:00-2:50pm, Th 11:00-11:50am
Objectives: ‘This course covers applications of statistics In biology and médicine,

motivated by Lypical case studies. The students will learn & variety of
uses, and abuses, of statistical methods. The material will be inter-
spersed with simple programming projects, which allows the students
to become famillar with R, the open-source software packnge used in
this course.

Contents: The first part of the course is a rapid review of essentials in probability
and statistics, The main part of the material focuses on Lypical esti-
mation problems and hypothesis lesting applied to data from medicine
as well as population, molecular and physiological biology.

General topic Approzimate Time
Probability and statistics essentials 2 weeks
Inferences for one sample 2 wecks
Summarizing and describing data 1 week
The two sample problem 2 weeks

Contingency tables 2 weeks
Case-control and cross-sectional studies 2 weeks
Introduction to non-parametric methods 2 weeks
Large datasels 1 week
Detalled topics include: Independence, Bayes rule, sensitivity and
specificity of a test, likelihood ratio; normal and chi-squared distri-
butlon, confidence intervals; students t-distribution; empirical quan-
tiles, baxplot, qauntile-quantile plot; kerne) density estimates, slem
and leaf plots, histograms; bootstrap principle; blnom!a.l‘ confidence
intervals; group i Pearsons chi-squared test;
/e 1 studies; dj for. family-
wise error, false-discovery rate; stfatified tables; matched pafis; Polsson
processes and 7ate estimate. » ) )

Prerequisites: MATH 1432 and MATH 2311, or equivalent.

Toxt: Bemard Rosner, Fundamentals of Biostatlstics, 6th edition, Thomson
Brooks/Cole, 2006.

1.1 What is biostatistics?

What is biostatistics? :
From the Wikipedia entry on biostatistics:

Biostatistics (a combination of the words biology and statistics;
sometimes referred to as biometry or biometrics) is the applica-
tion of statistics to a wide range of topics in biology and medicine.
The science of biostatistics encompasses

e the design of biological experiments, especially in medicine
and agriculture;

e the collection, summarization, and analysis of data from
those experiments; and

e the interpretation of, and inference from, the results.



Example: Mendel and pea counts
Gregor Mendel was an Augustinian monk who lived in the late 19th cen-
tury and, through studying peas, developed the basis for today’s genetics.

Expt.1.— AB, seed parents ab, pollen parents Pollen
A, form round a, form wrinkled
B, albumen yellow b, albumen green

The fertilized seeds appeared round and yellow like those of the .
seed parents. The plants raised therefrom yielded seeds of four sorts, Eggs
which frequently presented themselves in one pod. In all, 556 seeds
were yielded by 15 plants, and of these there were:

12R 172t

315 round and yellow,
101  wrinkled and yellow,

108 round and green, 1/2 R 1/4' RR 1/4 RT

32  wrinkled and green.

All were sown the following year. Eleven of the round yellow
seeds did not yield plants, and three plants did not form seeds. Among

the rest:
38 had round yellow seeds AB 12r
65 round yellow and green seeds ABb 1‘,4 I'R 1/ 4 i
60 round yellow and wrinkled yellow seeds AaB
138 round yellow and green, wrinkled yellow
and green seeds AaBb

Example: Smoking and cancer across 26 years
1938: Raymond Pearl pub- 1964: Advisory Committee to the
lishes “Smoking and Longevity” Surgeon General publishes “Smok-

ing and Health”

“ 7\ Jasacco mo Lo holding cigarette smoking responsi-
9 "\\f\lizfm-’ﬂmmfg:m ble for a 70 percent increase in the
50 4N mortality rate of smokers over non-
Y \ ‘\\ smokers. The report estimated that
gm Y \\ . average smokers had a nine- to
(fé’“ % %;:\“% ten-fold risk of developing lung
o ?—.}*\ :\Q cancer compared to non-smokers:
2 X ‘ heavy smokers had at least a twenty-
3 0 ‘\:’\\ fold risk. The report also named
é 24— TR smoking as the most important cause
ol i \.\ of chronic bronchitis and pointed to a
) l b correlation between smoking and em-
‘ physema, and smoking and coronary

o R TR T R heart disease.

Je . 70

Ase v YEARS
¥16, 1. The survivorship lines of life tables for white
males falling into three ¢ategories relative to the nsage of
tobacco. A. Non-users (solid line); B. Moderate smolkers
(Bash Kne); . Heavy smokers (dot line),



Example: stem cells and cardiovascular regeneration

Banamartow transplant
(MHCIEGFP)

1.2 Experiments: From reality to mathematical de-
scription

Statistical experiments: From reality. ..
The outcomes of a statistical experiment could be. ..

e an election

fragments from DNA nucleotide sequences

the result of a clinical trial

the output of a computer simulation

information gathered from hospital records



Experiments: ...to a mathematical description

e The sample space, (), is the collection of possible outcomes of an
experiment.

Example: die roll Q = {1,2,3,4,5,6}.
e An event, say F, is a subset of 2.
Example: die roll is even E = {2,4,6}.

e The set 0 is called the null event or the empty set.

Set theoretic notation and interpretation
Set operations have particular interpretations for events.

1. w € E means that if w occurs then E occurs, too.

w & E means that if w occurs, then E does not occur.

E C F means that the occurrence of E implies the occurrence of F.
E N F means the event that both E and F' occur.

E U F means the event that at least one of E or F' occur.

o ot R W N

ENF = () means that F and F' are mutually exclusive, or cannot
both occur.

7. E¢ or E is the event that E does not occur.

2 Probability essentials [Ch. 3.1-3.5, 4.1-4.3,
5.1-5.2]

Probability measures
A probability measure, P, is a real valued function from the collection
of possible events so that the following hold

1. Foranevent ECQ,0< P(E) <1
2. P() =1



3. If {E;}22, is a sequence of mutually exclusive (disjoint) events, then
P(UR E;) = > 22, P(Ey).

Discrete vs. continuous outcomes

e P is defined on F a collection of subsets of Q2
e Example Q = {1,2, 3} then

F=1{0,{1},{2},{3},{1,2}, {1,3}, {2.3}, {1,2,3}}.

e When (2 is a continuous set such as R, we always assume that F con-
tains all (bounded or semi-bounded) intervals, their complements, and
all countable intersections and unions thereof.

Rules for computing probabilities
Based on the axioms, we can prove all of the following:

. P(l) =0,

P(E) = 1— P(E¥),

P(AUB) = P(A)+ P(B) — P(AN B),
if A C B then P(4) < P(B),

P(AUB)=1- P(A°N B9,

PV B;) < 300, P(Ey),

e P(UL,E;) > max; P(E;).
Proving a‘rule

Prove that P(E) =1 — P(E°).

We have EU E¢ = Q and EN E° = (. Thus,
1 = P(Q)

= P(EUE°)

= P(E)+ P(E°)



Proving another rule

Prove that P(UY, F;) < S 7, P(E;)

We proceed by induction, starting with the case n = 2.

We have El = (El ﬂE2) U (El N Eg) Slmllarly, E2 = (Ez N El) U (Ez N Ef)
and E;UEs = (E1NEs)U(E1NES)U(E,NEY), with the events in parentheses
being mutually exclusive.

Additivity gives

P(E,UE,) = P(B,)+ P(E,)— P(E,N Ey)
< P(E))+ P(E)

Now consider n, assuming the rule holds for n — 1 and n = 2. Using
the induction assumption for n = 2 and the sets E,, U} E; and for n — 1
and the sets E1, Bo, ... By gives

n=2

P(UL,E) < P(E,)+ P(UZE)
n—1 n—1
< P(E,)+ > P(E)

j=1

= > P(E)
||

Using rules with a study on middle ear infections

In vol. 166 of the the European Journal of Pediatrics, Bulut et al. write
that from 120 children having an acute middle ear infection, “respiratory
viruses were isolated in 39 patients (32.5%). In total 69 bacterial species
were isolated from 65 (54.8%) of 120 patients.”

Question: Does this imply that 87.3% of patients tested positive for a
virus or for bacteria?

Answer: No, because

P(viruses or bacteria) = P(viruses) + P(bacteria) — P(viruses and bacteria)
so if some patients have both, then

P(viruses or bacteria) < P(viruses) + P(bacteria) = 0.873.



Rules and drosophila mutation rates .
Probability of spontaneous, lethal mutation in X chromosome (Crow and
Temin, 1964)
P(mutation) = 0.0025

Question: Since P(...) = 1/400, we need 400 fruit flies to observe a mutant
with certainty?

Rebuttal: The probability of having no mutation among 400 is easier to
compute, so we use complements.

1
P tation for 1 fly) =1— —.
(no mutation for 1 fly) 00

If the mutation for each fly is independent (see further below), then

P(no mutation among 400) = P({none for 1st } N {none for 2nd } N--- N {none for 400th})
= P({none for 1st })P({none for 2nd })... P({none for 400th})

_ 1 400
=0-q0

Thus,

P(at least 1 mutation among 400) = 1 — P(no mutation among 400)
=1— (1—0.0025)%°

We compute P(at least 1 mutation among 400) =~ 0.63.

2.1° Random variables

Random variables

e A random variable is a map from outcomes of an experiment to
numbers. '

e The random variables that we study will come in two varieties, discrete
or continuous.

° Dlscrete random variable are random variables that take on only a
countable number of possibilities, e.g. {0,1,2,3,...}.

e A continuous random variable can take any value on the real line or
some subset of the real line.



Examples of random variables

e The fortune of a casino player at some time.
e The value {0, 1} associated with the outcome of a coin flip.

e The systolic blood pressure of a person randomly drawn from a popu-
lation.

e The level of gene expression in some cell.

2.2 Probability Mass Functions and Probability Dis-
tribution Functions

Probability Mass Function (PMF)

A probability mass function evaluated at an outcome corresponds to
the probability that a random variable takes that value. To be a valid pmf,
a function p must satisfy

1. p(z) > 0 for all z

2. ¥, p() =1

The sum is taken over all of the possible values for x.

Probability Density Funtion
A probability density function (pdf) is an integrable function asso-
ciated with a continuous random variable.

Areas under the graph of a pdf correspond to probabilities for
that random variable.

To be a valid pdf, a function f must satisfy

1. f(z)>0foralz

2. [ f(z)dz=1



Example: Density for goldfish life
Assume that the natural life time of a goldfish in years follows a density
like

e—z/5

forz >0
= 5
f(:z) { 0 otherwise

More compactly written: f(z) = %e‘m/s for z > 0. Is this a valid density?
We check

1. The number e raised to any power is always positive, thus f is.

/ f(x)d:z:z/v e™*/% /5dx = ~e“‘”/5lgo=1
0 0

Example continued
What is the probability that a randomly selected goldfish from this dis-
tribution survives more than 6 years?

0 gt/" —t/5|%° __ _—6/5
P(X26):/6 s—dt = —e |, =e %% ~ 301

Approximation in R

pexp(6, 1/5, lower.tail = FALSE)

10



Example continued

density

0.00 0.05 0.10 0.15 0.20
1

0 5 10 15 20

Survival time in years

2.3 Cumulative Distribution Functions, survival func-
tions and quantiles

Cumulative Distribution Functions and the survival function

e The cumulative distribution function (CDF) of a random variable
X is defined as the function

F(z)=P(X <zx)

This definition applies, whether X is discrete or continuous.

The survival function of a random variable X is defined as

S(z)=P(X > )

Notice that S(z) =1 — F(z)

If a continuous random variables has a PDF, then it is the derivative
of the CDF.

11



Example: Survival function and CDF for exponential density
What are the survival function and CDF from the exponential density
considered before?

oo ,—t/5 .
S(z) = ©  dt= —e_t/sl = ¢2/5
5 T
T

hence we know that
F(z)=1-S(z)=1—e"%/

Notice that we can recover the PDF by

f(z) = () = - (1~ e™0%) = /%5

Quantiles

e The a'®quantile of a distribution with distribution function F' is the

point z, so that
F(za) = o

e A percentile is simply a quantile with o expressed as a percent

e The median is the 50®* percentile

Example: Quantiles for exponential distribution

e What is the 25 percentile of the exponential survival distribution
considered before?

e We want to solve (for z)

25 = F(z)
1— e—:z:/5

resulting in z = —log(.75) x 5 ~ 1.44

e Therefore, 25% of the goldfish from this population live less than 1.44
years

e R can approximate exponential quantiles: qexp(.25, 1/5)
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